Introduction

Read this manual carefully — it is important for the SAFE operation and servicing of your tires.

Michelin is dedicated and committed to the promotion of Safe Practices in the care and handling of all tires. This manual is in full compliance with the Occupational Safety and Health Administration (OSHA) Standard 1910.177 relative to the handling of single and multi-piece rims and wheels.

The purpose of this manual is to provide the MICHELIN® Truck Tire customer with useful information to help obtain maximum performance at minimum cost per mile. Michelin radial tires are a significant investment and should be managed properly. This manual is a collection of best practices that will assist fleets to increase their tire knowledge. The manual covers the full life cycle of the tire: selection, vehicle characteristics that affect performance, maintenance, and tire life extension through repair and retreading. For complete tire specifications, refer to the MICHELIN® Truck Tire Data Book, contact your local MICHELIN® Representative, or refer to the MICHELIN® website: www.michelintruck.com.
MICHELIN® tires and tubes are subject to a continuous development program. Michelin North America, Inc. reserves the right to change product specifications at any time without notice or obligation.

Please consult rim manufacturer’s load and inflation limits. Never exceed rim manufacturer’s limits without their authorization.
Table of Contents

Section One

Tire Selection .. 1-14

- WHICH MICHELIN® TIRE? ... 2
- PROPER APPLICATION OF URBAN "U" TIRES 3
- TRUCK TIRE APPLICATIONS 4-5
- DETERMINING MICHELIN TIRE SIZE 6-7
- TREAD DESIGN .. 8

DEFINITIONS ... 8-11

- DOT Markings
- Loads Per Axle and Inflation Pressures
- Rims and Wheels
- Maximum Speed Restrictions
- Static And Low Speed Load and Pressure Coefficients
- TRA (The Tire and Rim Association, Inc.) Standards
- Load/Inflation Table for Michelin 315/80R22.5 LRL
- Technical Specifications for Michelin 455/55R22.5 LRM on 13.00x22.5 Wheels Steer Axle, First Life Only

TRUCK TYPE BY WEIGHT CLASS 12-14

Section Two

Mounting the Tire .. 15-34

WARNINGS ... 16-17

- Zipper Ruptures
- Tire Inspection

GENERAL INSTRUCTIONS FOR TUBELESS TIRE

MOUNTING/DEMOUNTING .. 18-22

- Tubeless Tire Mounting/Demounting
- Using a Mounting Machine
- Directional Tires
- Selection of Proper Components and Materials
- Tire and Rim Lubrication
- Preparation of Wheels, Rims, and Tires

TUBELESS TIRE MOUNTING/DEMOUNTING 23-29

- Mounting Tubeless
- 19.5" Aluminum Wheels
- 19.5" Steel Wheels
- Inflation of Tubeless Tires
- Demounting of Tubeless Tires

MOUNTING THE ASSEMBLY ON THE VEHICLE 30-34

- Dual Spacing
- Technical Considerations for Fitting Tires
- Measuring Tires in Dual Assembly
- Tire Mixing
- Runout

Section Three

Extending Tire Life .. 35-62

MAINTAINING THE TIRE ... 36-45

- Inflation Pressure
 - Underinflation
 - Overinflation
 - Proper Inflation
 - Nitrogen
 - Sealants
 - Tire Inspection
 - Central Tire Inflation (CTI) Systems
 - Drive Carefully

MAINTAINING THE VEHICLE 46-62

- Tire Wear Patterns Due to Misalignment
 - Toe Wear
 - Free Rolling Wear
 - Camber Wear
 - Cupping Wear
 - Flat Spotting Wear
 - Diagonal Wear

Braking Systems and Issues

- Summary of Tire Issues Due to Brakes
- Brake Heat Overview
- Fifth Wheel Maintenance and Placement
- Suspensions

AIR SUSPENSION SYSTEMS 50-58

- Quick Checks for Trailer System Faults
- Quick Checks for Front Suspension Faults
- Quick Checks for Rear Suspension Faults

Section Four

MICHELIN® X One® TIRES ... 63-70

- Equivalent MICHELIN® X One® Tire Sizes
- WheelType
- Axle Track Width
- Vehicle Track

MICHELIN® X One® Tire Mounting Instructions

MICHELIN® X One® Tire Retread and Repair

Repair Recommendations

Retread Recommendations

Chains

Gear Ratio

Footprint Comparisons to Dual Tire Fitments
Section Five
MICHELIN® RV Tires ..71-82
GENERAL INFORMATION ABOUT MICHELIN RV TIRES72-73
Service Life for RV/Motorhome Tires
The Importance of Tire Pressure
Air Pressure Requirement
When to Check the RV Tires Air Pressure
Determining the RV’s Correct Weight
HOW TO WEIGH THE RECREATIONAL VEHICLE74-77
How to Weigh the RV
Weighing the Single Axle Recreational Vehicle
Weighing the Tandem Axle Recreational Vehicle
The Effect of Towed Vehicles or Trailers
How to Use the Actual RV Weight Information with the
Tire Data Load Chart
Using Blocks to Level Motorhomes and RVs Equipped with
Radial Tires
MAINTAINING MICHELIN RV TIRES78
Aging, Weather Checking, and Ozone Cracking
Long Term Storage and RV Tires
Proper Cleaning of the RV’s Tires
Tire Repair
Tire Inspection
COMMON TIRE DAMAGES ..79-80
Underinflation
Fatigue Rupture
Dual Kissing
Tire Wear, Balance, and Wheel Alignment
Toe Wear
Camber Wear
Tire Rotation
VIBRATION DIAGNOSIS ...81
Vibration Complaint
Vibration Diagnosis
SELECTING REPLACEMENT TIRES82

Section Six
Repairs and Retread ..83-88
REPAIRS ..84-88
Two-Piece Radial Truck Nail Hole Repair Method Instructions
MICHELIN® X One™ Tires Nail Hole Repair Method Instructions
Blue Identification Triangle
RETDREAD ..88

Section Seven
Diagonal (Bias Or Cross) Ply and Tube-Type89-100
THE DIAGONAL (BIA OR CROSS) PLY90-92
Definitions
Tube-Type Tire
Truck Tire Size Markings
Repair and Retread
Static and Low Speed Load and Pressure Coefficients
TRA (The Tire and Rim Association, Inc.) Standards
GENERAL INSTRUCTIONS FOR TUBE-TYPE TIRE
DEMOUNTING/MOUNTING ..93-95
Selection of Proper Components and Materials
Tire and Rim Lubrication
Preparation of Wheels, Rims, and Tires

DEMOUNTING TUBE-TYPE TIRES96-97
MOUNTING TUBE-TYPE TIRES98-100
Mounting Tube-Type Tires Using Manual Spreaders
Mounting Tube-Type Tires Using Automatic Spreaders
Inflation of Tube-Type Tires

Section Eight
Tire Damage ..101-112
EFFECT AND CAUSES ..101
RUN-FLAT ...102-103
AIR INFLATION ..104-105
PINCH SHOCK ..106
MINIMUM DUAL SPACING ...106
IMPACT DAMAGE ..107
FATIGUE RELATED DAMAGE ..108
BEAD DAMAGE ...109
ADDITIONAL CAUSES: REPAIRS AND
RETREADING CONDITIONS110-111
SCRAP INSPECTION FORM ...112

Section Nine
Appendix ...113-142
GENERAL INFORMATION ..114-117
Units of Measurement
Pressure Unit Conversion Table
Load Range/Ply Rating
Approximate Weight of Materials
Load Index
Conversion Table (Standard – Metric – Degrees)
Speed Symbol
ALIGNMENT – FIELD METHOD (ATTACC)118-119
RUNOUT TOLERANCES ...120-121
Front End Alignment
Axle Alignment
CASING MANAGEMENT ...122-123
COLD CLIMATE PRESSURE CORRECTION DATA123
COST ANALYSIS ..124
SIX CRITICAL FUNDAMENTALS THAT COST MONEY124
FUEL SAVINGS ...125
WHEEL TYPE ...126-128
TORQUE SPECIFICATIONS ..128-129
MOUNTING PROCEDURES FOR 16.00R20 AND 24R21130
TIRE REVOLUTIONS PER MILE CALCULATION131
OUT-OF-SERVICE CONDITIONS132-133
RUNOUT AND VIBRATION DIAGNOSIS134-135
SERVICING MULTI-PIECE AND SINGLE PIECE
RIM/WHEELS (OSHA 1910.177)136-138
REGROOVING ...139-140
PUBLICATIONS, VIDEOS, AND WEBSITES141-142
INDEX ..143-144
SECTION ONE
Tire Selection

- WHICH MICHELIN TIRE? 2
- PROPER APPLICATION OF URBAN “U” TIRES 3
- TRUCK TIRE APPLICATION 4-5
- DETERMINING MICHELIN TIRE SIZE 6-7
- TREAD DESIGN 8
- DEFINITIONS 8-11
 - DOT Markings
 - Loads Per Axle and Inflation Pressures
 - Rims and Wheels
 - Maximum Speed Restrictions
 - Static and Low Speed Load and Pressure Coefficients
 - TRA (The Tire and Rim Association, Inc.) Standards
 - Load/Inflation Table for Michelin 315/80R22.5 LRL
 - Technical Specifications for Michelin 455/55R22.5 LRM
 on 13.00x22.5 Wheels Steer Axle, First Life Only

- TRUCK TYPE BY WEIGHT CLASS 12-14
 - Class 1-8
 - Trailer
 - MICHELIN® X One® Tires
TREAD PATTERN DESIGNATION

Michelin uses specific numbers or letters to identify different types of tread patterns or casing construction.

![Tread Pattern Diagram](image)

For example:

<table>
<thead>
<tr>
<th>X® = MICHELIN RADIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
</tr>
<tr>
<td>D = Drive</td>
</tr>
<tr>
<td>T = Trailer</td>
</tr>
<tr>
<td>Z = All Position</td>
</tr>
<tr>
<td>F = Front (Steer)</td>
</tr>
</tbody>
</table>

Application Market Segments

<table>
<thead>
<tr>
<th>A = Highway Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Truckload Carrier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E = Regional Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Public Utilities</td>
</tr>
<tr>
<td>• School Bus</td>
</tr>
<tr>
<td>• Food Distribution</td>
</tr>
<tr>
<td>• Petroleum Delivery</td>
</tr>
<tr>
<td>• Manufacturing</td>
</tr>
<tr>
<td>• Auto Carriers</td>
</tr>
<tr>
<td>• Courier and Delivery Service</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U = Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Urban Buses</td>
</tr>
<tr>
<td>• Sanitation and Refuse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y = 80% On-Road Use, 20% Off-Road Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construction and Mining</td>
</tr>
<tr>
<td>• Forestry and Logging</td>
</tr>
<tr>
<td>• Oil Field</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L = 20% On-Road Use, 80% Off-Road Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construction and Mining</td>
</tr>
<tr>
<td>• Forestry and Logging</td>
</tr>
<tr>
<td>• Oil Field</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>= Anti-chip/Cut-resistant Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT = High Torque</td>
</tr>
<tr>
<td>Energy = Fuel Efficient</td>
</tr>
<tr>
<td>X One® = One Tire Replacing 2 Traditional Duals</td>
</tr>
<tr>
<td>M/S = Mud and Snow</td>
</tr>
<tr>
<td>A/T = All Terrain</td>
</tr>
<tr>
<td>S = Severe Service</td>
</tr>
</tbody>
</table>
Section One: Tire Selection

PROPER APPLICATION OF URBAN “U” TIRES

The tires with the “U” designation are designed and optimized for urban applications and should not be used in non-urban applications including, but not limited to, long haul and RV/motorhomes/coaches. These aforementioned applications may subject the tires to continuous use over an extended period of time. This could lead to heat build up and may cause the tire to fail prematurely and/or suddenly. See information below.

ALWAYS REFER TO THE MICHELIN DATA BOOK AND MATCH THE TIRE TO THE APPLICATION WHEN MAKING TIRE SELECTIONS.

TREAD PATTERN DESIGNATIONS

Tire manufacturers will use specific numbers or letters to identify different types of tread patterns or casing construction.
Michelin uses letters to denote specific qualities and/or applications for its tires.

<table>
<thead>
<tr>
<th>X</th>
<th>Z</th>
<th>U®</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICHELIN® Radial Trademark</td>
<td>Position</td>
<td>Application</td>
<td>Index (Used to denote product evolution)</td>
</tr>
</tbody>
</table>

TIRE APPLICATIONS

The specific tread design used should only be considered after the vehicle type and user vocation has been examined.
There are several categories of tire service applications:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGHWAY</td>
<td>REGIONAL</td>
<td>URBAN</td>
<td>ON/OFF-ROAD</td>
</tr>
<tr>
<td>Heavy loads and high speeds for extended periods of time. Primarily interstate or divided highway.</td>
<td>Medium to heavy loads, frequently on 2-lane roads. Vehicles generally return to home base at night.</td>
<td>Stop-and-go delivery service within a limited radius – metro and suburban.</td>
<td>Heavy loads and slower speeds, operating on a mixture of improved secondary and aggressive road surfaces. Very heavy loads normally on poor or unimproved surfaces.</td>
</tr>
</tbody>
</table>
Section One: Tire Selection

TRUCK TIRE APPLICATIONS

The choice of tire type depends upon the application and wheel position. No matter what your application may be, Michelin has a tire specifically designed for you. These applications include the following:

Long Haul (A)
The Long Haul application is made up of businesses operating primarily in common carrier and lease rental vocations. Vehicle annual mileage – 80,000 miles to 200,000 miles.

Regional (E)
The Regional application is made up of businesses such as public utilities, government – federal, state, and local – food distribution/process, manufacturing/process, petroleum, and schools operating within a 300-mile radius. Vehicle annual mileage – 30,000 miles to 80,000 miles.

Urban (U)
Urban applications are very short mileage with a high percentage of stop and go. Primary users are in retail/wholesale delivery, sanitation, and bus fleets. Vehicle annual mileage – 20,000 miles to 60,000 miles.

On/Off-Road (Y)
On/Off Road tires are designed to provide the durability and performance necessary in highly aggressive operating conditions at limited speeds. Vocations such as construction, mining, and refuse use these highly specialized tires. Vehicle annual mileage – 10,000 miles to 70,000 miles.
Recreational Vehicle Tire Application

Special Tire Applications / On/Off-Road (L)
- Drive & Steer
- Fork Lift/Utility Vehicles
- Indoor/Outdoor Applications

Commercial Light Truck Tire Applications
- Highway Tires, All-Wheel-Position
- All-Season, All-Terrain Tires
- All-Terrain Drive Axle Traction Tires
- Highway Mud & Snow Tires
DETERMINING MICHELIN TIRE SIZE

1. **Tire Size:** MICHELIN® radial truck tire sizes are designated by the nominal section width in inches or millimeters and the rim diameter (e.g. 11R22.5 or 275/80R22.5). The “R” indicates a radial tire. Truck tire sizes contain dimension and load index information and are marked in accordance with industry standards: FMVSS (Federal Motor Vehicle Safety Standard), TRA (The Tire and Rim Association, Inc.), ETRTO (European Tyre and Rim Technical Organisation), and ISO (International Standardization Organization). This index indicates the load capacity of the tire in single and in dual usage (e.g. 144/141K). See Appendix under General Information (Page 116) for complete ISO load index. Below are examples for tubeless tires. (See Section Seven for tube-type tire information.)

 Example: 11R22.5

 11 = nominal cross section in inches
 R = radial
 22.5 = rim or wheel diameter in inches

 Example: 275/80R22.5 LRG 144/141K

 275 = nominal cross section in mm (metric)
 80 = aspect ratio
 R = radial
 22.5 = rim or wheel diameter in inches
 LRG = load range G

2. **Overall Width:** The maximum width (cross section) of the unloaded tires including protruding side ribs and decorations as measured on the preferred rim. Overall width will change 0.1 inch (2.5 mm) for each 1/4 inch change in rim width. Minimum dual spacing should be adjusted accordingly.

3. **Nominal Wheel Diameter:** Diameter of rim seat supporting the tire bead given in nearest half-inch numbers, e.g. 22.5”.

4. **Overall Diameter:** The diameter of the unloaded new tire (measured from opposite outer tread surfaces).

5. **Section Height:** The distance from rim seat to outer tread surface of unloaded tire.

6. **Aspect Ratio:** A nominal number, which represents the section height, divided by the section width and expressed as a percentage.

 Example:

<table>
<thead>
<tr>
<th>Tire Size</th>
<th>Aspect Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>11R22.5</td>
<td>90</td>
</tr>
<tr>
<td>275/80R22.5</td>
<td>80</td>
</tr>
<tr>
<td>445/50R22.5</td>
<td>50</td>
</tr>
</tbody>
</table>

7. **Free Radius:** One-half the overall diameter of the unloaded new tire.

8. **Loaded Radius:** The distance from the wheel axle centerline to the supporting surface under a tire properly inflated for its load according to the load and inflation tables found in the application specific data books. See Appendix for listing of publications under Publications, Videos, and Websites (Page 139).

9. **Tire Deflection:** Free radius minus the loaded radius.

10. **Minimum Dual Spacing:** The minimum allowable lateral distance from tire tread centerline to tire tread centerline in a dual wheel arrangement.

11. **Tire Revolutions Per Mile:** Revolutions per mile for a tire size and tread is defined as the number of revolutions that the new tire will make in one mile. Data is normally presented for the loaded tire at its rated load and inflation in the drive position. Rolling circumference can be calculated from the revolutions per mile as follows:

 \[
 \text{Rolling circumference} = \frac{63,360}{\text{Tire Revs./Mile}} \text{ in inches}
 \]

 The tire revolutions per mile can be determined by measuring (using SAE J1025) or estimated by using a mathematical equation. See Appendix under Tire Revolutions Per Mile Calculation (Page 131). The accuracy of the tire revolutions per mile number is ±1%.

12. **Rims:** The approved/preferred rims are designated for each size tire. MICHELIN® tires should only be mounted on the rims shown. The rim shown first is the preferred rim. Be sure to check rim manufacturer's specifications.
All the information required to determine the proper tire size is contained in the application specific data books. A sample is shown below.

To select the proper tire size for a vehicle, it is necessary to know the maximum axle wheel end loads that the tires will carry and the maximum continuous speed at which they will operate. The maximum load that a tire can carry is different if it is mounted in dual configuration rather than single. The allowable axle loads and the required inflation pressures to carry these loads are shown in the charts for both single and dual mountings in the MICHELIN® Truck Tire Data Book (MWL40731). The maximum allowable continuous speed is also indicated.

Specifications for Tread Design: MICHELIN® XZA3®

<table>
<thead>
<tr>
<th>Size</th>
<th>Load Range</th>
<th>Catalog Number</th>
<th>Tread Depth 32nds</th>
<th>Max Speed (mph)</th>
<th>Loaded Radius</th>
<th>Overall Diameter</th>
<th>Overall Width (in.)</th>
<th>Approved Rims</th>
<th>Min. Dual Spacing (in.)</th>
<th>Max. Tire Load Single (lbs.)</th>
<th>Max. Tire Load Dual (lbs.)</th>
<th>Reves per Mile</th>
<th>MAXIMUM LOAD AND PRESSURE ON SIDEWALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>11R22.5 (1,2)</td>
<td>G</td>
<td>73162</td>
<td>19</td>
<td>75</td>
<td>19.3</td>
<td>489</td>
<td>41.3</td>
<td>1048</td>
<td>11.1</td>
<td>283</td>
<td>8.25, 7.50</td>
<td>12.5</td>
<td>318</td>
</tr>
<tr>
<td>275/80R22.5 (1,2)</td>
<td>G</td>
<td>73146</td>
<td>19</td>
<td>75</td>
<td>18.6</td>
<td>473</td>
<td>40.1</td>
<td>1018</td>
<td>10.9</td>
<td>277</td>
<td>8.25, 7.50</td>
<td>12.2</td>
<td>311</td>
</tr>
</tbody>
</table>

CHANGES TO LOAD AND INFLATION PRESSURE FOR COMMERCIAL TRUCK TIRES

2003 DOT standards require that both metric and English load, pressure, and speed units be marked on tires. In order to meet this new requirement, Michelin changed its maximum load at cold inflation pressure markings to ensure alignment with standards published by TRA (The Tire and Rim Association, Inc.), ETRTO (European Tyre and Rim Technical Organisation), etc. All MICHELIN® truck tires manufactured after January 1, 2002 (DOT week 0102) carry the new markings.

Data books published since then reflect the changes in maximum loads at various cold pressures. The MICHELIN truck tire website, www.michelintruck.com, was also updated to reflect these changes.

ALWAYS REFER TO THE ACTUAL SIDEWALL MARKINGS FOR MAXIMUM LOAD AT COLD INFLATION PRESSURE INFORMATION.

There still may be some tires in our distribution channels with the old markings. During this period of transition, customers may receive tires with the same MSPN with different load and inflation markings. The guidelines below should be followed when mounting tires of the same size with different markings on the same vehicle.

1. Make sure the tire maximum load and cold inflation pressure markings do not exceed those of the wheel.
2. If tires with different maximum load markings are mixed across an axle, apply the lowest load and cold pressure markings to all tires.
3. Ensure that the tire markings are adequate to meet the vehicle GAWR (Gross Axle Weight Rating) for all axles.

Note: Rim listed first is the measuring rim.

(1) Directional tread design.
(2) 7/7/3 Manufacturing Limited Casing Warranty: 700,000 miles, 7 years, or 3 retreads for MICHELIN® XZA3®, XZA3® Antisplash, XDA3®, and XDA® Energy tires only. See limited warranty for details.
(*) Exceeding the lawful speed limit is neither recommended nor endorsed.
(‡) Overall widths will change 0.1 inch (2.5 mm) for each 1/4 inch change in rim width. Minimum dual spacing should be adjusted accordingly.

MICHELIN® tires and tubes are subject to a continuous development program. Michelin North America, Inc. reserves the right to change product specifications at any time without notice or obligation.

Please consult rim manufacturer’s load and inflation limits. Never exceed rim manufacturer’s limits without permission of component manufacturer.
Section One: Tire Selection

DOT SIDEWALL MARKINGS

All new tires sold in North America for use on Public Highways must have a DOT (Department of Transportation) number molded into the lower sidewall. This certifies compliance with Federal Regulations. All retreaded tires must also have an additional DOT number affixed to their sidewalls as well. It is recommended that this marking be placed in the lower sidewall near the original DOT code. Certain states may require labeling in addition to the Federal regulations certifying compliance with the Industry Standard for Retreading. The first 2 characters on an original tire code indicate the factory that manufactured the tire while the first 4 letters on a retread indicate the dealer who manufactured the retread. Production dates are indicated by the last 3 or 4 digits of this marking. Tires made or retreaded prior to the year 2000 used 3 digits, the first two numbers indicating the week and the last one indicating the year of production, followed by a solid triangle to indicate the 1990's. Tires made or retreaded after the year 1999 will have a 4 digit code: the first 2 indicate the week and the last 2 indicate the year of manufacture.

LOADS PER AXLE AND INFLATION PRESSURES

The carrying capacity of each tire size is tabulated for various inflation pressures by individual tire load and by axle load for single applications (2 tires) and dual applications (4 tires). Due to the effects of load distribution and road inclination, the four tires in dual may not equally share the axle load. Therefore, to protect the tire carrying the largest share of the load, the capacity for duals is not twice the capacity for a single formation, but is usually between 5 and 13% less depending on tire size. Ensure that the air pressure between the dual tires and/or tires on the same axle does not differ by more than 5 psi. Also ensure tires run in dual are within 1/4 inch diameter to help achieve equal loading.

All trucks should be weighed, fully loaded, on a scale (not to exceed the GAWR - Gross Axle Weight Rating). Each axle, front and rear, must be weighed separately. Actual gross axle weights should be compared with the load and inflation tables to determine the inflation pressure required. The load carried by each individual front axle tire should be noted.

Due to uneven loading, motorhomes should be weighed by wheel end. The inflation pressure recommended must be capable of supporting the weighed values. Therefore, the maximum wheel end...
weight for the axle must be used. The maximum axle weight is determined by taking the highest wheel end value and multiplying by 2 for single applications and 4 for dual applications.

If the maximum load-carrying capacity of the tire is below the actual scale weight, then tires with greater carrying capacity should be used. This means either a tire with a higher load range or ply rating, or a larger tire size.

If the maximum load can be carried by the minimum pressure (as listed on the Load Inflation Chart), then a smaller size tire or a lower ply rated tire should be considered depending on the application and operation of the vehicle.

Never reduce air pressure below minimum data book specification without consulting Michelin®.

Ambient temperature will affect the air pressure within the tire. For every 10-degree temperature change, pressure readings will change between 1 and 2 pounds per square inch (psi). Consider this when checking pressures. Check all tires when cold at least 3 hours after the vehicle has stopped. Never bleed air from hot tires.

Additionally, altitude can have a slight affect on air pressure. For every 1,000 foot increase in altitude above sea level, air pressure will increase approximately 1/2 psi. For example, a tire inflated to 100 psi at sea level will read slightly over 102 psi in Denver, Colorado.

Please consult with Michelin® for additional information on cold and hot climate corrections.

RIMS AND WHEELS

The correct rims and wheels for each tire size are indicated in the specification tables. For complete tire specifications, refer to application specific data books.

MAXIMUM SPEED RESTRICTIONS*

Truck tires should normally be inflated according to the specification tables. The carrying capacities and inflation pressures specified in these tables are determined with the tire’s rated maximum speed in consideration. (See specification tables for each tire’s rated speed in the current MICHELIN Truck Tire Data Book.) This is a maximum continuous speed, not an absolute upper limit.

Reducing the maximum speed at which the tire will operate and adjusting inflation pressures according to the information contained in the following chart can help increase the carrying capacity. To use the Low Speed and Static Coefficient Chart (Page 10) you must know the tire size (standard conventional size example - 11R22.5 or low profile 275/80R22.5) and the maximum speed rating of that tire. Speed ratings can be found in the data book. Based on the size and speed rating, select the correct quadrant (Table A or B), find the speed value desired, and multiply the tire load capacity by the coefficient provided. Also, add the listed increase in air pressure (if any) to the air pressure value for the selected tire shown in the data book. Give special attention to the rim/wheel and vehicle axle ratings that may be exceeded by the increases in load and pressure. Tires optimized for highway applications have a maximum speed of 75 mph.

For speeds less than 20 mph (32 kph), please consult Michelin North America, Inc.

These limits apply only to Light Truck and Truck tires, but do not include Special Application tires, tires for high cube vans, low bed trailers, urban, on/off-road use and 315/80R22.5 LRL mounted on 8.25x22.5” wheels on steer axles.

The tires with “Y” or “L” (see Page 2) as the third character in the tread designs are designed and optimized for on/off-road applications and are speed restricted. These tires should not be used in applications that operate the tires continuously on highways over an extended period of time or at speeds that exceed the speed rating of the tire. This could lead to heat build up and cause premature or sudden tire failure as shown in this photo. Tires with the “Y” designation are for applications expected to be 80% on-road use and 20% off-road use. They have a maximum speed of 65 mph. Tires with the “L” designation are for applications expected to be 20% on-road use and 80% off-road use.

Some of the “L” designated tires have a maximum speed of 50 mph while others have maximum speeds of 55, 60, and 70 mph. There is no speed restriction once the casing has been retreaded per the RMA (Rubber Manufacturers Association) and the TMC (Technology & Maintenance Council).

The Tire and Rim Association, Inc. (TRA) permits operating a 65 mph rated tire at higher speeds with a reduced load and increased inflation. No such permission is granted by TRA for tires with speed ratings below 65 mph.

* Exceeding the legal speed limit is neither recommended nor endorsed.
STATIC AND LOW SPEED LOAD AND PRESSURE COEFFICIENTS

WARNING
Do not exceed loads or air pressure limits of the wheel or rim without permission of the component manufacturer. Exceeding the legal speed limit is neither recommended nor endorsed.

TRA (THE TIRE AND RIM ASSOCIATION, INC.) STANDARDS
(These Tables apply to tires only. Consult rim/wheel manufacturer for rim/wheel load and inflation capacities.)

Load limits at various speeds for radial ply truck/bus tires used on improved surfaces. (1)

A. METRIC AND WIDE BASE TIRES
The service load and minimum (cold) inflation must comply with the following limitations unless a speed restriction is indicated on the tire.

<table>
<thead>
<tr>
<th>Speed Range (mph)</th>
<th>% Load Change</th>
<th>Inflation Pressure Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 thru 75 (1)</td>
<td>-12%</td>
<td>+5 psi</td>
</tr>
<tr>
<td>66 thru 70 (1)</td>
<td>-4%</td>
<td>+5 psi</td>
</tr>
<tr>
<td>51 thru 65</td>
<td>None</td>
<td>No increase</td>
</tr>
<tr>
<td>41 thru 50</td>
<td>+7%</td>
<td>No increase</td>
</tr>
<tr>
<td>31 thru 40</td>
<td>+9%</td>
<td>No increase</td>
</tr>
<tr>
<td>21 thru 30</td>
<td>+12%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>11 thru 20</td>
<td>+17%</td>
<td>+15 psi</td>
</tr>
<tr>
<td>6 thru 10</td>
<td>+25%</td>
<td>+20 psi</td>
</tr>
<tr>
<td>2.6 thru 5</td>
<td>+45%</td>
<td>+20 psi</td>
</tr>
<tr>
<td>Creep thru 2.5</td>
<td>+55%</td>
<td>+20 psi</td>
</tr>
<tr>
<td>Creep (2)</td>
<td>+75%</td>
<td>+30 psi</td>
</tr>
<tr>
<td>Stationary</td>
<td>+105%</td>
<td>+30 psi</td>
</tr>
</tbody>
</table>

B. CONVENTIONAL TIRES
The service load and minimum (cold) inflation must comply with the following limitations unless a speed restriction is indicated on the tire.

<table>
<thead>
<tr>
<th>Speed Range (mph)</th>
<th>% Load Change</th>
<th>Inflation Pressure Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 thru 75 (1)</td>
<td>-12%</td>
<td>+5 psi</td>
</tr>
<tr>
<td>66 thru 70 (1)</td>
<td>-4%</td>
<td>+5 psi</td>
</tr>
<tr>
<td>51 thru 65</td>
<td>None</td>
<td>No increase</td>
</tr>
<tr>
<td>41 thru 50</td>
<td>+9%</td>
<td>No increase</td>
</tr>
<tr>
<td>31 thru 40</td>
<td>+16%</td>
<td>No increase</td>
</tr>
<tr>
<td>21 thru 30</td>
<td>+24%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>11 thru 20</td>
<td>+32%</td>
<td>+15 psi</td>
</tr>
<tr>
<td>6 thru 10 (2)</td>
<td>+60%</td>
<td>+30 psi</td>
</tr>
<tr>
<td>2.6 thru 5 (2)</td>
<td>+85%</td>
<td>+30 psi</td>
</tr>
<tr>
<td>Creep thru 2.5 (2)</td>
<td>+115%</td>
<td>+30 psi</td>
</tr>
<tr>
<td>Creep (2,3)</td>
<td>+140%</td>
<td>+40 psi</td>
</tr>
<tr>
<td>Stationary (2)</td>
<td>+185%</td>
<td>+40 psi</td>
</tr>
</tbody>
</table>

Note: For bias ply tires please consult the TRA Year Book.

Load limits at various speeds for radial ply truck/bus tires, rated at 75 mph or above, used on improved surfaces. (1)

C. METRIC AND WIDE BASE TIRES

<table>
<thead>
<tr>
<th>Speed Range (mph)</th>
<th>% Load Change</th>
<th>Inflation Pressure Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 thru 75</td>
<td>None</td>
<td>No increase</td>
</tr>
<tr>
<td>66 thru 70</td>
<td>None</td>
<td>No increase</td>
</tr>
<tr>
<td>51 thru 65</td>
<td>None</td>
<td>No increase</td>
</tr>
<tr>
<td>41 thru 50</td>
<td>+7%</td>
<td>No increase</td>
</tr>
<tr>
<td>31 thru 40</td>
<td>+9%</td>
<td>No increase</td>
</tr>
<tr>
<td>21 thru 30</td>
<td>+12%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>11 thru 20</td>
<td>+17%</td>
<td>+15 psi</td>
</tr>
<tr>
<td>6 thru 10</td>
<td>+25%</td>
<td>+20 psi</td>
</tr>
<tr>
<td>2.6 thru 5</td>
<td>+45%</td>
<td>+20 psi</td>
</tr>
<tr>
<td>Creep thru 2.5</td>
<td>+55%</td>
<td>+20 psi</td>
</tr>
<tr>
<td>Creep (2)</td>
<td>+75%</td>
<td>30 psi</td>
</tr>
<tr>
<td>Stationary</td>
<td>+105%</td>
<td>+30 psi</td>
</tr>
</tbody>
</table>

D. CONVENTIONAL TIRES

<table>
<thead>
<tr>
<th>Speed Range (mph)</th>
<th>% Load Change</th>
<th>Inflation Pressure Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 thru 75</td>
<td>None</td>
<td>No increase</td>
</tr>
<tr>
<td>66 thru 70</td>
<td>None</td>
<td>No increase</td>
</tr>
<tr>
<td>51 thru 65</td>
<td>None</td>
<td>No increase</td>
</tr>
<tr>
<td>41 thru 50</td>
<td>+9%</td>
<td>No increase</td>
</tr>
<tr>
<td>31 thru 40</td>
<td>+16%</td>
<td>No increase</td>
</tr>
<tr>
<td>21 thru 30</td>
<td>+24%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>11 thru 20</td>
<td>+32%</td>
<td>+15 psi</td>
</tr>
<tr>
<td>6 thru 10 (3)</td>
<td>+60%</td>
<td>+30 psi</td>
</tr>
<tr>
<td>2.6 thru 5 (3)</td>
<td>+85%</td>
<td>+30 psi</td>
</tr>
<tr>
<td>Creep thru 2.5 (3)</td>
<td>+115%</td>
<td>+30 psi</td>
</tr>
<tr>
<td>Creep (2,3)</td>
<td>+140%</td>
<td>+40 psi</td>
</tr>
<tr>
<td>Stationary (3)</td>
<td>+185%</td>
<td>+40 psi</td>
</tr>
</tbody>
</table>

(1) These load and inflation changes are only required when exceeding the tire manufacturer’s rated speed for the tire.
(2) Apply these increases to Dual Loads and Inflation Pressures.
(3) Creep – Motion for not over 200 feet in a 30-minute period.

Note 1: The inflation pressures shown in the referenced tables are minimum cold pressures for the various loads listed. Higher pressures should be used as follows:
A. When required by the above speed/load table.
B. When higher pressures are desirable to obtain improved operating performance.
For speeds above 20 mph, the combined increases of A and B should not exceed 20 psi above the inflation specified for the maximum load of the tire.

Note 2: Load limits at various speeds for:
Tires used in highway service at restricted speed.
Mining and logging tires used in intermittent highway service.
To determine the proper load/inflation table, always comply with the markings on the tire sidewall for maximum load at cold pressure.

Load and inflation industry standards are in a constant state of change. Michelin continually updates its product information to reflect these changes. Therefore, printed material may not reflect the current load and inflation information.

NOTE: Never exceed the wheel manufacturer's maximum air pressure limitation.

\(S = \) Single configuration – 2 tires per axle. \(D = \) Dual configuration – 4 tires per axle. Loads are indicated per axle.

LOAD / INFLATION TABLE FOR MICHELIN 315/80R22.5 LRL

The following table applies to LRL use with 8.25x22.5 Wheels.

8.25" rim – Michelin recommendation (loads per axle):

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Load Range</th>
<th>PSI 75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
<th>100</th>
<th>105</th>
<th>110</th>
<th>115</th>
<th>120*</th>
</tr>
</thead>
<tbody>
<tr>
<td>315/80R22.5</td>
<td>8.25" rim</td>
<td>lbs. per axle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10990</td>
<td>20900</td>
<td>11570</td>
<td>22000</td>
<td>12140</td>
<td>23100</td>
<td>12710</td>
<td>24180</td>
<td>13280</td>
<td>25260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11570</td>
<td>22000</td>
<td>12140</td>
<td>23100</td>
<td>12710</td>
<td>24180</td>
<td>13280</td>
<td>25260</td>
<td>13820</td>
<td>26300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12140</td>
<td>23100</td>
<td>12710</td>
<td>24180</td>
<td>13280</td>
<td>25260</td>
<td>13820</td>
<td>26300</td>
<td>14380</td>
<td>27360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12710</td>
<td>24180</td>
<td>13280</td>
<td>25260</td>
<td>13820</td>
<td>26300</td>
<td>27360</td>
<td>28400</td>
<td>14920</td>
<td>29440</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13280</td>
<td>25260</td>
<td>13820</td>
<td>26300</td>
<td>27360</td>
<td>28400</td>
<td>29440</td>
<td>30440</td>
<td>15460</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13820</td>
<td>26300</td>
<td>27360</td>
<td>28400</td>
<td>29440</td>
<td>30440</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14380</td>
<td>27360</td>
<td>28400</td>
<td>29440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14920</td>
<td>29440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Never exceed the wheel manufacturer's maximum cold air pressure limitation and/or load rating.

* When used on an 8.25" rim, the max load and pressure is lower than that indicated on the sidewall.

TECHNICAL SPECIFICATIONS FOR MICHELIN 455/55R22.5 LRM ON 13.00X22.5 WHEELS STEER AXLE, FIRST LIFE ONLY

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Load Range</th>
<th>Loaded Radius</th>
<th>RPM</th>
<th>Max. Load Single*</th>
</tr>
</thead>
<tbody>
<tr>
<td>455/55R22.5</td>
<td>LRM</td>
<td>19.5 in.</td>
<td>493 mm</td>
<td>10000 lbs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Load Range</th>
<th>RPM</th>
<th>Max. Load Single*</th>
</tr>
</thead>
<tbody>
<tr>
<td>455/55R22.5</td>
<td>LRM</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psi</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kPa</td>
<td>520</td>
</tr>
<tr>
<td>13.00" rim</td>
<td></td>
<td></td>
<td>13740</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lbs. per axle</td>
<td>6240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kg. per axle</td>
<td>2840</td>
</tr>
</tbody>
</table>

* Note: When used on a 13.00" rim the max load and pressure is lower than that indicated on the sidewall.
<table>
<thead>
<tr>
<th>TRUCK TYPE BY WEIGHT CLASS</th>
<th>CLASS 1
6,000 lbs. GVW and less</th>
<th>CLASS 2
6,001 to 10,000 lbs. GVW</th>
<th>CLASS 3
10,001 to 14,000 lbs. GVW</th>
<th>CLASS 4
14,001 to 16,000 lbs. GVW</th>
<th>CLASS 5
16,001 to 19,500 lbs. GVW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILK/BREAD</td>
<td>MILK/BREAD</td>
<td>MILK/BREAD</td>
<td>CONVENTIONAL VAN</td>
<td>RACK</td>
<td></td>
</tr>
<tr>
<td>UTILITY VAN</td>
<td>UTILITY VAN</td>
<td>WALK-IN VAN</td>
<td>LARGE WALK-IN</td>
<td>LARGE WALK-IN</td>
<td></td>
</tr>
<tr>
<td>PICK-UP</td>
<td>FULL SIZE PICK-UP</td>
<td>LARGE VAN</td>
<td>CITY DELIVERY</td>
<td>BUCKET</td>
<td></td>
</tr>
<tr>
<td>FULL SIZE PICK-UP</td>
<td>CREW CAB PICK-UP</td>
<td></td>
<td></td>
<td>TREE SPECIALIST</td>
<td></td>
</tr>
<tr>
<td>COMPACT VAN</td>
<td>COMPACT VAN</td>
<td></td>
<td></td>
<td>BOTTLED GAS</td>
<td></td>
</tr>
<tr>
<td>SUV</td>
<td>LARGE SUV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP VAN</td>
<td>STEP VAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CREW VAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINI BUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section One: Tire Selection

<table>
<thead>
<tr>
<th>CLASS 6</th>
<th>CLASS 7</th>
<th>CLASS 8</th>
<th>TRAILER</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,501 to 26,000 lbs. GVW</td>
<td>26,001 to 33,000 lbs. GVW</td>
<td>33,001 lbs. and over</td>
<td>Weight: Not specified</td>
<td></td>
</tr>
<tr>
<td>TOW</td>
<td>HOME FUEL</td>
<td>FUEL</td>
<td>DRY VAN</td>
<td>GVW – Gross Vehicle Weight The total weight of the loaded vehicle includes chassis, body, and payload.</td>
</tr>
<tr>
<td>FURNITURE</td>
<td>TRASH</td>
<td>DUMP</td>
<td>DOUBLES</td>
<td></td>
</tr>
<tr>
<td>STAKE</td>
<td>FIRE ENGINE</td>
<td>CEMENT</td>
<td>LIQUID TANK</td>
<td></td>
</tr>
<tr>
<td>COE VAN</td>
<td>SIGHTSEEING BUS</td>
<td>REEFER</td>
<td>DRY BULK</td>
<td></td>
</tr>
<tr>
<td>SCHOOL BUS</td>
<td>TRANSIT BUS</td>
<td>TANDEM AXLE VAN</td>
<td>DRY BULK</td>
<td></td>
</tr>
<tr>
<td>SINGLE AXLE VAN</td>
<td>RV</td>
<td>INTERCITY BUS</td>
<td>PLATFORM</td>
<td></td>
</tr>
<tr>
<td>BOTTLER</td>
<td>LOW PROFILE COE</td>
<td>LARGE RV</td>
<td>SPREAD AXLE</td>
<td></td>
</tr>
<tr>
<td>LOW PROFILE COE</td>
<td></td>
<td>TANDEM REFUSE</td>
<td>DROP FRAME</td>
<td></td>
</tr>
<tr>
<td>GCW TO 65,000</td>
<td>GCW TO 80,000</td>
<td></td>
<td>DUMP</td>
<td></td>
</tr>
<tr>
<td>HIGH PROFILE COE</td>
<td>LOW PROFILE TANDEM COE</td>
<td>HEAVY CONVENTIONAL</td>
<td>REEFER</td>
<td>GAWR – Gross Axle Weight Rating Maximum allowable load weight for a specific spindle, axle, wheel, and rim combination.</td>
</tr>
<tr>
<td>MEDIUM CONVENTIONAL</td>
<td>HEAVY CONVENTIONAL</td>
<td>HEAVY TANDEM CONVENTIONAL</td>
<td>DEEP DROP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HEAVY TANDEM CONVENTIONAL SLEEPER</td>
<td>AUTO TRANSPORTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DOLLY</td>
<td></td>
</tr>
</tbody>
</table>

GVW – Gross Vehicle Weight
The total weight of the loaded vehicle includes chassis, body, and payload.

GCW – Gross Combination Weight
Total weight of loaded tractor-trailer combination includes tractor-trailer and payloads.

GAWR – Gross Axle Weight Rating
Maximum allowable load weight for a specific spindle, axle, wheel, and rim combination.

Identical vehicles may appear in different vehicle weight classes. This is because of a difference in the components installed in each vehicle such as engines, transmissions, rear axles, and even tires that are not readily discernible in the external appearance of those particular vehicles.
Truck Types Recommended for Michelin X One Fitments

<table>
<thead>
<tr>
<th>Class 6</th>
<th>Class 7</th>
<th>Class 8</th>
<th>Trailer</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,501 to 26,000 lbs. GVW</td>
<td>26,001 to 33,000 lbs. GVW</td>
<td>33,001 lbs. and over</td>
<td>Weight: Not specified</td>
<td></td>
</tr>
<tr>
<td>TOW</td>
<td>HOME FUEL</td>
<td>FUEL</td>
<td>DRY VAN</td>
<td>Recommended Applications for Michelin X One Tires</td>
</tr>
<tr>
<td>FURNITURE</td>
<td>TRASH</td>
<td>DUMP</td>
<td>DOUBLES</td>
<td>Acceptable for Michelin X One Tires</td>
</tr>
<tr>
<td>STAKE</td>
<td>FIRE ENGINE</td>
<td>CEMENT</td>
<td>LIQUID TANK</td>
<td></td>
</tr>
<tr>
<td>COE VAN</td>
<td>SIGHTSEEING/COACH</td>
<td>REEFER</td>
<td>DRY BULK</td>
<td></td>
</tr>
<tr>
<td>SINGLE AXLE VAN</td>
<td>TRANSIT BUS</td>
<td>TANDEM AXLE VAN</td>
<td>LOGGER</td>
<td></td>
</tr>
<tr>
<td>BOTTLER</td>
<td>RV</td>
<td>INTERCITY BUS</td>
<td>PLATFORM</td>
<td></td>
</tr>
<tr>
<td>LOW PROFILE COE</td>
<td></td>
<td>LARGE RV</td>
<td>SPREAD AXLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TANDEM REFUSE</td>
<td>DROP FRAME</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DUMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>REEFER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DEEP DROP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AUTO TRANSPORTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DOLLY</td>
<td></td>
</tr>
</tbody>
</table>

GCW TO 65,000 | GCW TO 80,000

| High Profile COE | Low Profile Tandem COE | Medium Conventional | Heavy Conventional | Heavy Tandem Conventional | Heavy Tandem Conventional Sleeper | | |

| High Profile COE | Low Profile Tandem COE | Medium Conventional | Heavy Conventional | Heavy Tandem Conventional | Heavy Tandem Conventional Sleeper | | |
SECTION TWO
Mounting the Tire

WARNINGS 16-17

- Zipper Ruptures
- Tire Inspection

GENERAL INSTRUCTIONS FOR TUBELESS TIRE MOUNTING/DEMOUNTING 18-22

- Warnings
- Tubeless Tire Mounting/Demounting
- Using a Mounting Machine
- Directional Tires
- Selection of Proper Components and Materials
- Tire and Rim Lubrication
- Preparation of Wheels, Rims, and Tires

TUBELESS TIRE MOUNTING/DEMOUNTING 23-29

- Mounting Tubeless
- 19.5” Aluminum Wheels
- 19.5” Steel Wheels
- Inflation of Tubeless Tires
- Demounting of Tubeless Tires

MOUNTING THE ASSEMBLY ON THE VEHICLE 30-34

- Dual Spacing
- Technical Considerations for Fitting Tires
- Measuring Tires in Dual Assembly
- Tire Mixing
- Runout
Tire and rim servicing can be dangerous and must be done only by trained personnel using proper tools and procedures. Failure to read and comply with all procedures may result in serious injury or death to you or others.

Re-inflation of any type of tire and rim assembly that has been operated in a run-flat or underinflated condition (80% or less of recommended operating pressure) can result in serious injury or death. The tire may be damaged on the inside and can explode while you are adding air. The rim parts may be worn, damaged, or dislodged and can explosively separate. Refer to RMA Tire Information Service Bulletin on potential “zipper ruptures” – TISB Volume 33, Number 3 (December 2007).

RMA (Rubber Manufacturers Association) recommends that any tire suspected of having been run underinflated and/or overloaded must remain in the safety cage, be inflated to 20 psi OVER maximum air pressure marked on the sidewall, and then be inspected. Do not exceed the maximum inflation pressure for the rim or wheel.

Be sure to reduce pressure to regular operating pressure before placing back in service if the tire has been deemed serviceable.

Use of starting fluid, ether, gasoline, or any other flammable material to lubricate, seal, or seat the beads of a tubeless tire can cause the tire to explode or can cause the explosive separation of the tire/rim assembly resulting in serious injury or death. The use of any flammable material during tire servicing is absolutely prohibited.

Any inflated tire mounted on a rim contains explosive energy. The use of damaged, mismatched, or improperly assembled tire/rim parts can cause the assembly to burst apart with explosive force. If you are struck by an exploding tire, rim part, or the air blast, you can be seriously injured or killed.

Re-assembly and inflation of mismatched parts can result in serious injury or death. Just because parts fit together does not mean that they belong together. Check for proper matching of all rim parts before putting any parts together.

Mismatching tire and rim component is dangerous. A mismatched tire and rim assembly may explode and can result in serious injury or death. This warning applies to any combination of mismatched components and rim combinations. Never assemble a tire and rim unless you have positively identified and correctly matched the parts.
ZIPPER RUPTURES

A fatigue-related damage, with or without a rupture, occurs in the sidewall flex area of steel radial light and medium truck tires when it is subjected to excessive flexing or heat. This zipper rupture is a spontaneous burst of compressed air, and the resulting rupture can range in length anywhere from 12 inches to 3 feet circumferentially around the tire. This is caused by the damage and weakening of the radial steel cables as a result of run-flat, underinflation, or overload. Eventually, the air pressure becomes too great for the weakened cables to hold, and the area ruptures with tremendous force.

The RMA (Rubber Manufacturers Association) states that permanent tire damage due to underinflation and/or overloading cannot always be detected. Any tire known or suspected of having been run at 80% or less of normal operating inflation pressure and/or overloaded, could possibly have permanent structural damage (steel cord fatigue).

TIRE INSPECTION

Tire inspection should always include a thorough inspection of both sidewalls and inner liner, as this may reveal any potential damage condition that would cause the tire to become scrap. Examine the inner liner for creases, wrinkling, discoloration, or insufficient repairs, and examine the exterior for signs of bumps or undulations, as well as broken cords, any of which could be potential out of service causes. Proper OSHA regulations must be followed when putting any tire/rim back in service. After the tire has been inflated to 20 psi in a safety cage, it should undergo another sidewall inspection for distortions, undulations, or popping noises indicating a breaking of the steel cords. If this is the case, immediately fully deflate and scrap the tire. If no damage is detected, continue to inflate to the maximum air pressure marked on the sidewall. Do not exceed the maximum inflation pressure for the rim or wheel. Any tire suspected of having been run underinflated and/or overloaded must remain in the safety cage, be inflated to 20 psi OVER maximum air pressure marked on the sidewall, and then be inspected.

The RMA has issued a revised Tire Industry Service Bulletin for procedures to address zipper ruptures in certain commercial vehicle tires. The purpose of the bulletin is to describe the inspection procedures for identifying potential sidewall circumferential ruptures (also known as “zipper ruptures”) on truck/bus tires and light-truck tires of steel cord radial construction. Zipper ruptures can be extremely hazardous to tire repair technicians. Careful adherence to proper repair procedures is crucial.

For more information contact RMA at info@rma.org or visit www.rma.org.
GENERAL INSTRUCTIONS FOR TUBELESS MOUNTING/DEMOUNTING

In order for a tire to perform properly, it must be mounted on the correct size rim or wheel. The following are general instructions for mounting and demounting MICHELIN® tubeless tires, including the MICHELIN® X One® tires.

Specifics for 19.5" wheels are detailed in the Mounting Tubeless Tire section (Page 23). For additional detailed instructions on mounting and demounting truck tires on particular types of rims and wheels, refer to the instructions of the rim and wheel manufacturer or the RMA wall charts.

1. Inspect rim for excessive wear or damage. Correctly position and properly torque the valve stem: 80-125 in/lbs (7-11 ft/lbs) for standard aluminum wheels and 35-55 in/lbs (3-5 ft/lbs) for standard tubeless steel wheels.

2. Fully lubricate both flanges and the drop center.

3. Fully lubricate both beads and the inside of the bead that will be the last one mounted.

4. Place rim in correct position, short side up (drop center up).

5. Do not use your knee to place the tire; use the proper tools.

6. Place the tire on the wheel using a rocking motion with adequate downward pressure (the bottom bead may drop over the wheel flange).
Section Two: Mounting the Tire

If necessary, continue to work the first bead on with proper tubeless tire tools.

Mount second bead using same method.

Use the proper tool, not the duck bill hammer.

With assembly horizontal, inflate to no more than 5 psi to seat the beads.

Place the assembly in the safety cage for safe inflation.

Use a clip-on chuck.

TUBELESS TIRE MOUNTING/DEMOUNTING USING A MOUNTING MACHINE

There are several tire changing machines available for the mount and demount procedure. Consult the manufacturer's user manual for the machine you are using as each operates differently. Full lubrication of the wheel and BOTH tire beads is still required. Inflation process requirements remain the same.
DIRECTIONAL TIRES

Truck tires featuring directional tread designs have arrows molded into the shoulder/edge of the outer ribs to indicate the intended direction of tire rotation. It is important, to maximize tire performance, that directional tires be mounted correctly on wheels to ensure that the directionality is respected when mounted on the vehicle.

For example, when mounting directional drive tires on a set of 8 wheels, use the drop centers as a reference. Four tires should be mounted with the arrows pointing to the left of the technician and four tires with the arrows pointing to the right. This ensures that when the assemblies are fitted onto the vehicle that all tires can be pointed in the desired direction of rotation.

Directional steer tires should be mounted in a similar fashion, one each direction, to ensure both are pointed forward.

Once directional tires are worn greater than 50%, there is generally no negative effect of running them in a direction opposite to the indicated direction of rotation.

Operating directional tires from new to 50% worn in the opposite direction of that indicated on the tire will result in the premature onset of irregular wear, excessive noise levels, and significantly reduced tread life.
1. SELECTION OF PROPER COMPONENTS AND MATERIALS

a. All tires must be mounted on the proper rim/wheel as indicated in the specification tables. For complete tire specifications, refer to application specific data books.

b. Make certain that rim/wheel is proper for the tire dimension.

c. Always install new valve cores and metal valve caps containing plastic or rubber seals.

d. Always replace the rubber valve stem on a 16” through 19.5” wheel.

e. Always use a safety device such as an inflation cage or other restraining device that will constrain all rim/wheel components during the sudden release of the contained air of a single piece wheel. Refer to current OSHA standards for compliance. **Do not bolt safety cages to the floor nor add any other restraints or accessories. Cage should be placed 3 feet from anything, including the wall.** Never stand over a tire or in front of a tire when inflating. Always use a clip-on valve chuck with an in-line valve fitted with a pressure gauge or use a presettable regulator. **Additionally, ensure there is a sufficient length of hose between the clip-on chuck and the in-line valve (if one is used) to allow the service technician to stand outside the trajectory zone when inflating.**

Note: Safety cages, portable and/or permanent, are also available for inflation of the MICHELIN® X One® tire assemblies.

NEVER WELD OR APPLY HEAT TO A RIM OR WHEEL ON WHICH A TIRE IS MOUNTED.
2. TIRE AND RIM LUBRICATION

It is essential that an approved tire mounting lubricant be used. Preferred materials for use as bead lubricants are vegetable based and mixed with proper water ratios per manufacturer’s instructions. Never use antifreeze, silicones, or petroleum-base lubricants as this will damage the rubber. Lubricants not mixed to the manufacturer’s specifications may have a harmful effect on the tire and wheel. The lubricant serves the following three purposes:

- Helps minimize the possibility of damage to the tire beads from the mounting tools.
- Helps ease the insertion of the tire onto the rim by lubricating all contacting surfaces.
- Assists proper bead seating (tire/rim centering) and helps to prevent eccentric mountings.

The MICHELIN product, Tiger Grease 80, MSPN 25817, is specifically formulated for commercial truck tire mounting. It can be obtained through any authorized MICHELIN Truck Tire dealer or by contacting MICHELIN Consumer Care (1-888-622-2306).

For tube-type tires apply a clean lubricant to all portions of the tire bead area and the exposed portion of the flap using sufficient but sparing quantities of lubricant. Also, lubricate the entire rim surface. Avoid using excessive amounts of lubricant, which can become trapped between the tire and tube and can result in tube damage and rapid air loss.

CAUTION: It is important that tire lubricant be clean and free of dirt, sand, metal shavings, or other hard particles. The following practice is recommended:

a. Use a fresh supply of tire lubricant each day, drawing from a clean supply source and placing the lubricant in a clean portable container.

b. Provide a cover for the portable container and/or other means to prevent contamination of the lubricant when not in use. For lubricants in solution, we suggest the following method that has proven to be successful in helping to minimize contamination and prevent excess lubricant from entering the tire casing: provide a special cover for the portable container that has a funnel-like device attached. The small opening of the funnel should be sized so that when a swab is inserted through the opening into the reserve of lubricant and then withdrawn, the swab is compressed, removing excess lubricant. This allows the cover to be left in place providing added protection. A mesh false bottom in the container is a further protection against contaminants. The tire should be mounted and inflated promptly before lubricant dries.

3. PREPARATION OF WHEELS, RIMS, AND TIRES

- Always wear safety goggles or face shields when buffing or grinding rims or wheels.
- Inspect wheel/rim assemblies for cracks, distortion, and deformation of flanges. Using a file and/or emery cloth, smooth all burrs, welds, dents, etc. that are present on the tire side of the rim. Inspect the condition of bolt holes on the wheels. Rim flange gauges and ball tapes are available for measuring wear and circumference of aluminum wheels.
- Remove rust with a wire brush and apply a rust inhibiting paint on steel wheels. The maximum paint thickness is 0.003” on the disc face of the wheel.
- Remove any accumulation of rubber or grease that might be stuck to the tire, being careful not to damage it. Wipe the beads down with a dry rag.
TUBELESS TIRES MOUNTING / DEMOUNTING

MOUNTING TUBELESS

1. Inspect the condition of the bolt holes on the wheels, and look for signs of fatigue. Check flanges for excessive wear by using the wheel manufacturer’s flange wear indicator.

2. Replace valve core, and inspect valve stem for damage and wear. Michelin recommends always replacing the valve stem and using a new valve stem grommet. Ensure valve stem is installed using the proper torque value. 80-125 in/lbs (7-11 ft/lbs) for standard aluminum wheels and 35-55 in/lbs (3-5 ft/lbs) for standard tubeless steel wheels. Ensure the valve core is installed using the proper torque value of 1.5 – 4 in/lbs. To prevent galvanic corrosion on aluminum wheels, lubricate the threads and o-ring of the valve stem with a non-waterbased lubricant before installation.

3. Apply the tire and rim lubricant to all surfaces of the rim and bead area of the tire. When applying lubricant to the rim, lubricate the entire rim surface from flange to flange. The tire should be mounted and inflated before the lubricant dries.

4. With short ledge up, lay the tire over the rim opposite the valve side and work it on with proper tubeless tire tools, making full use of the drop center well. Drop center wheels are typically designed with an off-set drop center to accommodate wheel width and brake clearance. This creates a “short side” and a “long side” on the wheel. (Some drop center wheels are designed with a symmetric rim profile facilitating tire mounting from either side.) It is imperative that the tire always be mounted and dismounted only from the short side. Failure to do this will likely result in damaged tire beads that could eventually cause rapid air loss due to casing rupture. This is particularly important on 19.5 inch RW (reduced well) aluminum wheels which, contrary to the norm, have their drop center located close to the disc side. Do not use 19.5 x 7.50 rim for the 305/70R19.5 tire size.

All 19.5 inch tubeless wheels should be mounted from the short side. Care should be taken to ensure that any internal monitoring system molded in the tire or on the rim is not damaged or dislodged during this service.
1. Fully lubricate both flanges and the drop center.

2. Fully lubricate both beads and the inside of the bead that will be the last one mounted.

3. Start with short (narrow) side up, disc face up.

4. Work tire on with proper tubeless tire tools.

5. Do not use a duck bill hammer here!

6. Use rocking motion and pressure to place the bead.

7. Using the proper tool, seat the bead with one tool. Do not use a duck bill hammer here!

8. Or, seat the bead with the use of two tools. Do not use a duck bill hammer here!

9. Lay the assembly flat, inflate to no more than 5 psi, and following proper procedures, complete inflation process using Safety Cage (per OSHA standards).
19.5" Steel Wheels

1. Fully lubricate both flanges and the drop center.

2. Fully lubricate both beads and the inside of the bead that will be the last one mounted.

3. Start with short (narrow) side up, disc face down.

4. Work tire on with proper tubeless tire tools.

5. Do not use a duck bill hammer here!

6. Place part of second bead in drop center.

7. Using the proper tool, seat the second bead.

8. Use the proper tool to obtain the correct bite. Do not use a duck bill hammer here!

9. Turn over assembly, laying horizontal, inflate to no more than 5 psi, and following proper procedures, complete inflation process using Safety Cage (per OSHA standards).
5. **Do not use any kind of hammer.** Severe inner liner damage may occur resulting in sidewall separation and tire destruction. Use only proper mounting levers; **DO NOT USE A DUCK BILL HAMMER.**

6. The MICHELIN® X One® tire is designed to replace dual tires on the drive and trailer positions of tandem over the road vehicles, and the tires must be mounted on 22.5 x 14.00” size wheels. Position the tire and wheel assembly so the valve stem is facing outward, away from the vehicle.
INFLATION OF TUBELESS TIRES

1. Lay tire/wheel assembly horizontally and inflate to no more than 5 psi to position the beads on the flanges. OSHA dictates no more than 5 psi outside the cage to seat the beads.

2. To complete the seating of the beads, place the assembly in an OSHA (Occupational Safety and Health Administration) compliant inflation restraining device (i.e., safety cage) and inflate to 20 psi. Check the assembly carefully for any signs of distortion or irregularities from run-flat. If run-flat is detected, scrap the tire.

3. If no damage is detected, continue to inflate to the maximum air pressure marked on the sidewall. RMA (Rubber Manufacturers Association) recommends that any tire suspected of having been underinflated and/or overloaded must remain in the safety cage at 20 psi over the maximum air pressure marked on the sidewall. Do not exceed the maximum inflation pressure for the wheel. RMA requires that all steel sidewall tires are inflated without a valve core.

4. Ensure that the guide rib (GG Ring/mold line) is positioned concentrically to the rim flange with no greater than 2/32” of difference found circumferentially. Check for this variation by measuring at four sidewall locations (12, 3, 6, 9 o’clock). If bead(s) did not seat, deflate tire, re-lubricate the bead seats and re-inflate.

Note: As a general guide in vibration analysis, the 30/60/90 rule may apply:
- **.030-.060 (1/32 to 2/32 inch)** = No action is required. Limited possibility for vibration exists, and this range maximizes the ability to balance properly.
- **.061-.090 (2/32 to 3/32 inch)** = Corrective action would be to perform the 3 R’s, after deflating the tire.
 - Rotate the tire on the wheel
 - Re-lubricate the tire and wheel (ensure the wheel is very clean)
 - Re-inflate ensuring your initial inflation is with the tire lying horizontal (3-5 psi max)
- **>.090 (>3/32 inch)** = Perform 3 R’s if mismount is indicated; however, when the reading is this high, it usually requires checking runout on these component parts: wheels/hubs/drums/wheel bearings.

5. After beads are properly seated, place the tire in safety cage and inflate assembly to maximum pressure rating shown on the sidewall, then reduce to operating pressure. Check valve core for leakage, then install suitable valve cap. Consider the use of inflate-thru or double seal valve caps for easier pressure maintenance.
DEMOUNTING OF TUBELESS TIRES

1. If still fitted on the vehicle, completely deflate the tire by removing the valve core. In the case of a dual assembly, completely deflate both tires before removing them from the vehicle (OSHA requirement). Run a wire or a pipe cleaner through the valve stem to ensure complete deflation.

2. With the tire assembly lying flat (after deflating the tire), break the bead seat of both beads with a bead breaking tool. Do not use hammers of any type to seat the bead. Striking a wheel/rim assembly with a hammer of any type can damage the tire or wheel and endanger the installer. Use a steel duck bill hammer only as a wedge. Do not strike the head of a hammer with another hard faced hammer – use a rubber rim mallet.

3. Apply the vegetable-based lubricant to all surfaces of the bead area of the tire.

4. Beginning at the valve, remove the tire from the wheel. Starting at the valve will minimize chances of damaging the valve assembly. Make certain that the rim flange with the tapered ledge that is closest to the drop center is facing up. Insert the curved ends of the tire irons between the tire and rim flange. Step forward into the drop center and drop the bars down, lifting the tire bead over the rim flange. Hold one tire iron in position with your foot. Pull the second tire iron out and reposition it about 90 degrees from the first iron. Pull the second tire iron towards the center of the wheel. Continue to work tools around rim until first bead is off the rim.

5. Lift the assembly, place and rotate the tire iron to lock on the back rim flange, allow the tire to drop, and with a rocking motion remove the tire from the rim.

WARNING

Never inflate or re-inflate any tires that have been run underinflated or flat without careful inspection for damage, inside and out.
4. Be sure to start at the valve stem, not away from or opposite.

5. Step forward into the drop center, laying the bars down.

6. Progressively work tools around the rim until the first bead is off the rim.

7. Completely unseat the first bead.

8. Failure to work with small sections on a non-lubricated bead will result in unnecessary damage to the bead.

9. Lift the assembly, place the tire iron inside, rotate to lock the tab against the flange.

10. Allow the assembly to drop, and rock the tire from the wheel.
When wheel assemblies are mounted on a vehicle, be sure that the valves do not touch the brake drums or any mechanical part of the vehicle. When mounting the MICHELIN® X One® tire utilizing a 2” outset wheel onto a vehicle, position the tire so that the tire sits on the outboard side of the wheel similar to where the outer dual would normally be positioned. Position the tire and wheel assembly so the valve stem is facing outward, away from the vehicle.

Valves of dual tires should be diametrically opposite. Ensure that the inside valve is accessible so the air pressure can be checked and maintained.

Tires mounted in dual must be matched so that the maximum difference between the diameters of the tires does not exceed 1/4” diameter or a circumferential difference of 3/4”. For tires of the same bead diameter and size, the maximum allowable difference in tread depth is 4/32”. Failure to properly match dual tires will result in the tire with the larger diameter carrying a disproportionate share of the load. Mismatched duals can lead to rapid wear, uneven wear, and possible casing failure.

Tandem drive axle vehicles without an inter-axle differential (or when it is locked out) necessitate that tires are closely matched. The inter-axle differential is a gear device dividing power equally between axles and compensating for such things as unequal tire diameters, the effect of front and rear suspensions, torque rod positioning and the like on the working angles of the universal joints. Normally in the unlock position, this provides minimized wear and tear on tires and the drivetrain. Tandem drive rear axles (twin-screw) require that the average tire circumference on one axle be within 1/4” of the average tire diameter on the other axle to prevent damage to the drive differentials resulting from different revolutions per mile on the drive axles.

Since any one tire of the size used with these axles may lose as much as 2.5” in diameter due to normal wear and still be serviceable, it is readily seen that a wide difference in tire circumference may exist.

Equal tire inflation (between adjacent duals) at the pressures recommended by the tire manufacturer should be maintained.

IMPORTANT: Check to ensure that you know which mounting system you are working with and that the components are correct. For additional information, see Wheel Type on Pages 126-129 of Section Nine, Appendix.
If the governed speed for a vehicle originally equipped with 455/55R22.5 tires is 75 mph, the top speed with 11R24.5 will be \((495/473) \times (75 \text{ mph}) = (1.05) \times (75 \text{ mph}) = 78.8 \text{ mph}\). The speedometer will read 75 mph when the vehicle is actually traveling 78.8 mph.

Rule of Thumb: When going from a lower Tire Revs./Mile to a higher Tire Revs./Mile, the actual vehicle speed is less than the speedometer reading. When going from a higher Tire Revs./Mile to a lower Tire Revs./Mile, the actual vehicle speed is greater than the speedometer reading.

2. WHEEL DIAMETER

![Diagram of Wheel Diameter](image)

3. RIM WIDTH

An increase in the tire section may require a wider rim with a greater outset.

4. WHEEL OUTSET/INSET FOR DUAL WHEELS

The minimum wheel outset required is determined by the tire minimum dual spacing. Outset is the lateral distance from the rim centerline to the mounting surface of the disc. Outset places the rim centerline outboard of the mounting (hub face) surface. Inset is the lateral distance from the rim centerline to the mounting surface of the disc. Inset places the rim centerline inboard of the mounting (hub face) surface.

OFFSET for front wheels: When retrofitting steer axles with tires/wheels of a width different from the OE size, wheel offset must be considered. Wheel offset should be chosen to avoid interference with vehicle parts and also to avoid exceeding overall vehicle width regulations.

5. TIRE CLEARANCES

All clearances around a tire should be checked:
- To the nearest fixed part of the vehicle, i.e., to parts that are not affected by spring deflection or steering mechanism.
- To the nearest part of the vehicle, which can be moved, i.e. parts that are affected by spring deflection or steering mechanism.

Consideration should be given to any additional clearance required by the use of chains. Minimum clearances recommendation: 1"

a. Lateral Clearances

Lateral clearance is the smallest distance horizontally between the tire and the nearest fixed point of the vehicle. Lateral clearance will be reduced by an increase in the offset of the inner wheel plus half of any increase in the tire section.

![Incorrect Lateral Clearance](image)

Note: When using a 2” outset wheel, the MICHELIN® X One® tire should be mounted so that the tire sits outward similar to an outer dual tire. However, use of outset wheels may change Gross Axle Weight Rating (GAWR). Consult vehicle manufacturer.

![Correct Lateral Clearance](image)
b. Vertical Clearances

Vertical clearance is measured between the top of the tread and the vehicle component immediately above the tire (usually a fender). This will vary as the springs operate. The vertical movements of the whole axle, in relation to the whole chassis, are normally limited by an axle stop. When measuring vertical clearance, subtract the axle stop clearance from the total clearance; the difference is the remaining vertical clearance. When checking vertical clearance, consideration must be given to the degree of tread wear, and an allowance of 1” must be made if the tread on the existing tire is between 2/32” and 4/32”.

Vertical and body clearances are decreased by any increase in the free radius of the tire.

When using tire chains, a minimum of two inches of clearance is needed to provide space between the dual assembly and the vehicle.

Check to be sure that the body clearance is not less than the vertical clearance. A fender bolt may be closer to the tire than the fender. This, then, is the smallest distance and should be recorded.

c. Longitudinal Clearances

The semi-elliptical spring method of suspension permits the axle to move back longitudinally as well as vertically when the spring deflects. As a guide, the maximum backward movement may be taken as one third of the distance between the shackle pin centers. The remaining longitudinal clearance must be noted.

d. Front Wheel Clearances

The clearances of both front wheels must be measured on both steering lock positions. Clearances of front wheels must be checked by turning the wheels from full left lock to full right lock since the minimum clearance might occur at some intermediate point.

Steering Stops should be measured as they control the angle of the turn. Ensure they exist and are not damaged. Damage may indicate clearance issues or be a cause of abnormal tire wear.

6. OVERALL WIDTH

When fitting larger tires, the overall width of the vehicle across the tires is increased by half of the increase in the cross section of each outside tire and the increase in offset of each outside wheel.

7. SPARE WHEEL RACK

Always check the spare wheel rack to see that the tire will fit. Ensure that location is not in proximity to engine exhaust.

8. LEGAL LIMITS

Most states and provinces in North America have legal limits for vehicle carrying capacities, overall vehicle dimensions, and minimum ground clearances. Each of these factors must be taken into consideration. Check with local jurisdictions.
MEASURING TIRES IN DUAL ASSEMBLY

If drive and trailer tires are of equal tread depth and have equal inflation pressure, the inner tire in the dual assembly is subjected to more deflection, as it is under a heavier load and is affected by the condition of the road on which it operates. This result of road slope (Interstate System and primary roads) or road crown (secondary roads) on the inner tire is more grip than the outer tire achieves. Thus, the inner tire dictates the revolutions per mile of the assembly, resulting in the outer tire having more rapid tread wear.

Measuring the circumferences of the tires with an endless tape after they are on the rims and inflated, but before they are applied to a vehicle, is the most accurate method. The endless tape, as the name signifies, is a tape made of one half inch bending steel, one end of which passes through a slot at the other end of the tape and forms a loop. Measuring in this manner takes into account any irregularities in wear.

In checking tires already on a vehicle, the following may be used: (A) a square (similar to but larger than a carpenter’s square), (B) a string gauge, (C) a large pair of calipers, or (D) a wooden straight edge long enough to lie across the treads of all four tires.
TIRE MIXING
IMPROPER TIRE MIXING CAN BE DANGEROUS

Four Wheel Trucks: For the best performance it is recommended that the same size, design, and construction of tire be used on all four wheel positions. If only two MICHELIN® radials are mounted with two non-radials, the radials should be mounted on the rear. If tires of different design are mixed on a vehicle in any configuration, they should not be used for long periods, and speeds* should be kept to a minimum.

Mixing or matching of tires on 4-wheel drive vehicles may require special precautions. Always check vehicle manufacturer’s Owners Manual for their recommendations.

Trucks with more than four wheel positions:
For best performance, it is recommended that radial and non-radial tires should not be mixed in dual fitment. It is unlawful and dangerous to mix radials and bias tires on the same axle.

*Exceeding the safe, legal speed limit is neither recommended nor endorsed.

RUNOUT

The ideal time to verify that proper mounting procedures have resulted in concentric bead seating is during the installation of new steering tire/wheel assemblies. The ‘on vehicle’ assembly radial and lateral runout measurements should be the lowest possible to offer the driver the smoothest ride. Both the guide rib variance and the hub to wheel clearance on hub piloted assemblies can be measured following the procedures found in the Runout and Vibration Diagnosis guidelines on Pages 134-135 of Section Nine, Appendix.
MAINTAINING THE TIRE 36-45

Inflation Pressure
- Underinflation
- Overinflation
- Proper Inflation
- Nitrogen
- Sealants
- Tire Inspection
- Central Tire Inflation Systems
- Drive Carefully
- Tread Depth Measurements
- Wear Bars
- Do Not Overload
- Drive at Proper Speeds
- Balance and Runout
- Storage
- Flood Damage
- Chains
- Recommendation for Use of Dynamometers
- Spinning
- Rotation
- Siping
- Branding

MAINTAINING THE VEHICLE 46-62

Major Factors That Affect Tire Life
- Alignment
- Steer Axle Geometry
- Toe
- Tandem Axle Parallelism
- Thrust Angle (Tracking)
- Camber
- Caster
- Steer Axle Setback
- Toe-Out-On-Turns
- TMC Recommended Alignment Targets
- Periodic Alignment Checks
- Alignment Equipment
- Field Check Techniques
- Axle Parallelism and Tracking

Tire Wear Patterns Due to Misalignment
- Toe Wear
- Camber Wear
- Flat Spotting Wear
- Free Rolling Wear
- Cupping Wear
- Diagonal Wear

Braking Systems and Issues
Summary of Tire Issues Due to Brakes
- Brake Heat Overview

Fifth Wheel Maintenance and Placement
Suspensions
Air Suspension Systems
- Quick Checks for Trailer System Faults
- Quick Checks for Front Suspension Faults
- Quick Checks for Rear Suspension Faults
Air pressures on all newly delivered equipment should be verified for the application/operation prior to the vehicle being placed in service. Verify that any pressure monitoring or inflation system is correctly set for your fleet application on the delivery of any new equipment.

Proper maintenance is important in order to obtain maximum performance.

INFLATION PRESSURE

The most critical factor in tire maintenance is proper inflation. No tire or tube is completely impervious to loss of air pressure. To avoid the hazards of underinflation, lost air must be replaced.

Driving on any tire that does not have the correct inflation pressure is dangerous and will cause tire damage.

Any underinflated tire builds up excessive heat that may result in sudden tire destruction. The correct inflation pressures for your tires must incorporate many factors including: load, speed, road surface, and handling.

Consult a MICHELIN® Truck Tire dealer or MICHELIN data books for the proper inflation pressures for your application. See the Introduction for complete listings of the MICHELIN data books.

Failure to maintain correct inflation pressure may result in sudden tire destruction and/or improper vehicle handling. Additionally it will result in irregular wear. Therefore, inflation pressures should be checked weekly and always before long distance trips.

Check inflation pressures on all your tires at least once a week, including spares, before driving when tires are cold, especially when vehicle is used by more than one driver.

The ideal time to check tire pressures is early morning. Driving, even for a short distance, causes tires to heat up and air pressures to increase.

Generally, as a radial tire revolves during operation, heat is generated on the inside of the tire at 4 degrees per minute. However, the tire loses heat at the rate of 3 degrees per minute with dissipation throughout the casing and air flow around the tire. After 40 minutes of continuous operation, the tire temperature has increased 40 degrees Fahrenheit. As the air temperature inside the tire increases, the inflation pressure also increases. Thus, a tire inflated to 80 psi cold would now be at 85 psi. Because the inflation pressure has increased, the amount of tire flexing has decreased, which decreases the amount of heat generated per minute to 3 degrees per minute. Assuming the heat dissipation factor is still 3 degrees Fahrenheit per minute, the net temperature change is nil (0). This is called thermal equilibrium.

Always inspect valve stems for proper installation and torque, and verify there is a good airtight seal by use of a leak detector type spray such as a water/soap solution applied from a spray bottle. It is also a good practice to periodically check existing fitments for slow leaks with this method.

Never bleed air from hot tires, as your tires will then be underinflated. Make sure to check both tires in a dual fitment. Pressures should be the same. Maximum allowable difference between dual tires or between axles should be no greater than 5 psi.

Remember, a drop in ambient temperature results in a drop in tire pressure. More frequent checks may be required during cold weather conditions. Avoid outdoor air pressure checks when the temperature is below freezing. Ice can form in the valve stem, thus promoting leaks. Check inside a heated facility if possible.

Use an accurate calibrated tire gauge to check pressures. (Do not use “Tire Billys” to hit tires as an inflation check. This is an unreliable method.)

Unless otherwise recommended by tire manufacturer for optimized tire performance, use the tire inflation pressure shown in the application data books for the particular axle load. Exceeding this pressure could result in reduced traction and tread life.

Never inflate to cold pressure beyond the rated capacity of the rim/wheel. However, for steering tires, it is common practice to use higher inflation pressures than necessary to carry the axle load to reduce free rolling wear.

Following are two examples of applying the previous considerations to an operation where the user mounts new 275/80R22.5 LRG (with a data book maximum of 110 psi tires) steer tires and desires to increase the air pressure in order to see if this will help alleviate the occurrence of free rolling wear.

Example 1: If the axle load is 10,310 lbs., then the table in the data book specifies a corresponding pressure of 85 psi. Then the user can increase the pressure 15-20 psi above that to 100 or 105 psi.

Example 2: If the axle load is 12,350 lbs., then the table in the data book recommends 110 psi. As this is the maximum load of the tire, only a 10% pressure increase is permitted. Thus the adjusted pressure would be limited to 120 psi.

This procedure should not be applied “across the board.” If satisfactory tire performance and wear are being obtained with “table” pressures for a given load, then leave well enough alone.

Overinflation can cause an increase in road shocks and vibrations transmitted to the vehicle as well as an increase in tire failures from road hazards.

NOTE: In no case should the maximum capacity of the wheel/rim be surpassed. Consult wheel/rim manufacturer’s specifications.

NOTE: The following illustration is based on the recommended inflation pressure from the data book for the load being carried.
UNDERINFLATION
Causes abnormal tire deflection, which builds up heat and causes irregular wear. Similar to the rim being too wide.

OVERINFLATION
Causes tires to run hard and be more vulnerable to impacts. It also causes irregular wear. Similar to the rim being too narrow.

PROPER INFLATION
The correct profile for full contact with the road promotes traction, braking capability, and safety.

NOTE: Due to the unique casing design of the MICHELIN X One tire, traditional air pressure adjustment practices for dual tires may not apply to the MICHELIN X One tire product line. For additional information, see Pages 63-70 of Section Four, MICHELIN X One Tires and applicable Technical Bulletins.

It is important to maintain inflation equipment (air compressor, air lines, and air dryer) so as not to repeatedly introduce moisture into the tire, thereby accelerating oxidation effects to the tire and rim.

NITROGEN
Nitrogen is very dry inert gas which makes up approximately 78% of the air around us and can be affected by humidity. Tires inflated with a normal air compressor already contain 78% nitrogen. Increasing the nitrogen percentage to 100% with a nitrogen inflation system will not adversely affect the inner liner of the tires nor the performance of the tires under normal operating conditions. While there are advantages for industrial and large off-the-road earthmover tires, the advantage in commercial truck products is difficult to verify. Moisture, rather than oxygen, is the bigger concern for casing degradation. Using good equipment (air compressor, air lines, and air dryer) will reduce the moisture content of the air in the tire. Moisture, when present in the tire, greatly accelerates the oxidation effects to the tire and rim. The introduction of even a small amount of normal air will negate the advantage of the intended use of 100% nitrogen. If a nitrogen system is to be utilized, Michelin would recommend it be installed by trained personnel using appropriate equipment and safety guidelines. Regular pressure maintenance remains critical, and tire inflation check intervals should not be extended due to nitrogen use.
SECTION THREE: EXTENDING TIRE LIFE

SEALANTS – FOREIGN MATTER IN TIRES
Please check with Michelin prior to using sealants or compounds in any MICHELIN® tires that have sensors in them. They may adversely affect the performance of the sensors.*

The use of sealants in MICHELIN® Truck Tires does not automatically nullify the warranty agreement covering the tires.

If the sealant has been tested and certified by the sealant manufacturer as being safe for use in tires, then the warranty agreement will remain in effect.

If it is determined that the sealant adversely affected the inner liner and/or the performance of the tire, then the warranty agreement may be nullified.

Please refer to the MICHELIN® Truck Tire Warranty* for what is and is not covered by the warranty.

If you have any questions, please contact Michelin at 1-888-622-2306 or refer to www.michelintruck.com for warranty information.

If foreign matter is installed in any tire, be careful not to contaminate the bead, and be sure to advise any personnel working with the tire to exercise due caution.

* See MICHELIN Truck Tire Warranty Manual (MWE40021) for details.

TIRE INSPECTION
While checking inflation pressures, it is a good time to inspect your tires. If you see any damage to your tires or wheels/rims, see a MICHELIN® Truck Tire dealer at once.

Before driving, inspect your tires, including the spare, and check your air pressures. If your pressure check indicates that one of your tires has lost pressure of 4 psi or more, look for signs of penetrations, valve leakage, or wheel/rim damage that may account for air loss.

If the tire is 20% below the maintenance air pressure, it must be considered flat. Remove and inspect for punctures or other damage. If run-flat damage is detected, scrap the tire. Refer to TMC RP 216, Radial Tire Conditions Analysis Guide.

Tires should be inspected for bulges, cracks, cuts, or penetrations. If any such damage is found, the tire must be inspected by a MICHELIN Truck Tire dealer at once. Use of a damaged tire could result in tire destruction, property damage and/or personal injury.

Equipment that has been out of service for an extended period of time should have the tires inspected for ozone damage and proper air inflation. The vehicle should have some moderate operating service prior to being put in full service operation.

[Images of tire damage and inspection points are included]

* See MICHELIN Truck Tire Warranty Manual (MWE40021) for details.
Example of sidewall penetration that damaged interior at crown. Road hazard damages should always be inspected on the inside and not repaired from the outside.

Inspect for Penetrating Objects

Sidewall Abrasion

Sidewall Damage from Impact

Bead Damage

Sidewall Area Damage
CENTRAL TIRE INFLATION SYSTEM OR PRESSURE MONITORING SYSTEM

Maintaining proper tire inflation will help maximize tire life and casing durability. This can result in reduced overall tire costs, downtime, tire replacement, irregular wear, wheel replacement, road debris, and the natural resources required to manufacture tires and retreads. Correct inflation will help increase benefits such as fuel efficiency, safety, driver retention, and uptime, all of which have a direct effect on cost per mile.

While these systems may reduce tire labor, it is still necessary to inspect tires to ensure they are serviceable, properly inflated, and the systems are working correctly. All of these systems need to be properly installed and maintained to deliver the benefits they provide.

Most of the systems on the market are capable of maintaining a cold inflation pressure within the capacity of the truck's air system. The use of these systems does not nullify the MICHELIN® Truck Tire Warranty* unless it is determined that the system somehow contributed to the failure or reduced performance of the tire. Proper air pressure maintenance is important for the optimized performance of the tires, so it is important to make sure the system can maintain the pressures needed and/or can detect accurately when the pressures are outside of the normal operating range(s) for the loads being carried. Some inflation systems will add pressure when cold weather temperature drops the psi below that which the system is calibrated for, resulting in a pressure higher than the target setting. For example, a 40 degree temperature drop will reduce pressure readings by 6 to 8 pounds psi, thus the inflation system will increase the pressure above the target by a like amount. Tires on vehicles with these systems should still be gauged weekly and cold pressure adjusted if necessary.

Michelin® does not and cannot test every system that is being marketed/manufactured for effectiveness, performance, and durability. It is the responsibility of the system manufacturer to ensure that the tires are inflated as rapidly as possible to the optimal operating pressure in order to prevent internal damage to the tires. In view of the increasing promotion for the use of pressure monitoring and/or inflation systems, Michelin strongly urges the customer to put the responsibility on the system's manufacturer to prove and support their claims. Please refer to the MICHELIN® Truck Tire Warranty Manual* for a general discussion of what is and is not covered by the warranty.

Systems on trailers can sometimes allow slow leaks caused by nails or other small objects penetrating the crown area of the tire to go undetected. A slow leak can be compensated for by the air inflation system. The warning light of the Central Tire Inflation (CTI) system will only come on if the pressure in the tire drops below a certain percent (usually 10%) of the regulated preset pressure. Even when the pressure drops below this point, the light will go off if the system is able to restore and maintain the preset pressure.

If you have any questions, please contact Michelin at 1-888-622-2306.

DRIVE CAREFULLY

All tires will wear out faster when subjected to high speeds as well as hard cornering, rapid starts, sudden stops, and frequent driving on surfaces that are in poor condition. Surfaces with holes and rocks or other objects can damage tires and cause vehicle misalignment. When you drive on such surfaces, drive on them carefully and slowly, and before driving at normal or highway speeds, examine your tires for any damage, such as cuts or penetrations.

TREAD DEPTH MEASUREMENTS

Tires should be measured for wear. This measurement can be taken in several spots across the tread and around the circumference. However, to calculate the remaining amount of rubber (knowing the new tire tread depth) for a given number of miles to be run, the measurement should always be taken at the same spot on the tread and close to the center groove of the tire, as shown below.

* See MICHELIN Truck Tire Warranty Manual (MWE40021) for details.
WEAR BARS

MICHELIN® truck tires contain “wear bars” in the tread grooves of the tire tread, which show up when only 2/32nds of an inch or less of tread remains. These tread depth indicators are identified on the shoulder by the Michelin Man. Tread depths should not be taken on the wear bar indicators. When the tread is worn level with the wear bar indicators (from either even or irregular wear), the tire must be removed from service. (Federal law requires truck tires on steer axles to have at least 4/32nds of an inch tread depth and all other axles have a 2/32nd inch limit.)

DO NOT OVERLOAD

The maximum load that can be put on a truck tire is dependent upon the speed at which the tire will be used. Consult a MICHELIN® Truck Tire dealer or the application data books for complete information on the allowable loads for application. Tires that are loaded beyond their maximum allowable loads for the particular application will build up excessive heat that may result in sudden tire destruction, property damage, and personal injury.

Some states have enacted “Load Per Inch Width” regulations for the purpose of governing axle weight on (primarily) the steering axle of commercial vehicles. These regulations provide a carrying capacity of a certain number of pounds per each cross-sectional inch (unloaded) across the tire’s width. The determination of the tire’s width can vary from state to state but presumably would be based upon either the tire manufacturer’s published technical data for overall width or the width as marked on the sidewall of the tire (which may require conversion from Metric to English units). It is recommended to contact your state’s DOT office to confirm the current Load Per Inch Width Law.

For example, if a state allows for 550 pounds per inch width, a tire marked 11R22.5 could carry up to 6,050 pounds (11 x 550) or a total of 12,100 pounds on the steer axle (2 x 6,050). Another way to look at it is to take the total weight carried and divide by the stated Inch Width Law to determine the appropriate size tire. If a commercial front end loader (sanitation vehicle) wants to carry 20,000 pounds in a state with a 600 pound per inch width limit (20,000/600 = 33.3), you would need a tire that is at least 16.7 inches wide (33.3/2). In this case a 425/65R22.5 could legally carry the load (425/25.4 = 16.7 inches Metric to English conversion).

The two formulas are:

- Load Per Inch Width Law x tire section width x number of tires = gross axle weight limit
- Gross axle weight / Inch Width Law / number of tires = minimum tire section width needed

Do not exceed the gross axle weight ratings (GAWR) for any axle on the vehicle.

Do not exceed the maximum pressure capacity of the wheel. Consult the wheel manufacturer in these cases.

DRIVE AT PROPER SPEEDS

The maximum continuous speed at which MICHELIN® truck tires can be operated is indicated in the MICHELIN® data books. See Section Nine, Appendix under Publications, Videos, and Websites (Page 139) for complete listings of the MICHELIN® data books. This speed varies for each type of tire and depends on the type of application. Consult MICHELIN® Consumer Care (1-888-622-2306) for assistance in determining the maximum speed for your application. Exceeding this maximum speed will cause the tire to build up excessive heat that can result in sudden tire destruction, property damage, and personal injury. In any case, legal speed limits and driving conditions should not be exceeded.

High speed driving can be dangerous and may be damaging to your tires.

When driving at highway speeds, correct inflation pressure is especially important. However, at these speeds, even with correct inflation pressures, a road hazard, for example, is more difficult to avoid. If contact is made, it has a greater chance of causing tire damage than at a lower speed. Moreover, driving at high speeds decreases the time available to avoid accidents and bring your vehicle to a safe stop.
BALANCE AND RUNOUT

It is customary to check tire/wheel assembly balance if the driver makes a ride complaint. Before removing the tire/wheel assembly from the vehicle, check for radial and lateral runout. Bent wheels and rims, improper mounting, or flat spotting can cause excessive runout. If balance is still required, a simple static balance with bubble balancer or a wall mounted axle bearing and hub type gravity balancer should be sufficient. See Section Nine, Appendix for Runout and Vibration Diagnosis on Pages 134-135.

Current Technology & Maintenance Council (TMC) limits from TMC RP 214C, Tire/Wheel End Balance and Runout, are listed in the tables below.

TABLE A:
RECOMMENDED BALANCE AND RUNOUT VALUES FOR DISC WHEELS AND DEMOUNTABLE RIMS

<table>
<thead>
<tr>
<th></th>
<th>Balance (See Note 2)</th>
<th>Radial Runout (See Note 3)</th>
<th>Lateral Runout (See Note 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubeless Steel Disc Wheels</td>
<td>6 oz. max</td>
<td>0.070 inch max</td>
<td>0.070 inch max</td>
</tr>
<tr>
<td>Tubeless Aluminum Disc Wheels</td>
<td>4 oz. max</td>
<td>0.030 inch max</td>
<td>0.030 inch max</td>
</tr>
<tr>
<td>Tubeless Demountable Rims</td>
<td>N/A</td>
<td>0.070 inch max</td>
<td>0.070 inch max</td>
</tr>
<tr>
<td>Wide Base Wheels Steel</td>
<td>See Note 1</td>
<td>0.075 inch max</td>
<td>0.075 inch max</td>
</tr>
<tr>
<td>Wide Base Wheels Aluminum</td>
<td>See Note 1</td>
<td>0.030 inch max</td>
<td>0.030 inch max</td>
</tr>
</tbody>
</table>

Note 1: Refer to the manufacturer's specifications for balance and runout values.
Note 2: Amount of weight applied to rim to balance individual wheel component.
Note 3: For steel wheels, the area adjacent to the rim butt weld is not considered in runout measurements.

TABLE B:
TIRE/WHEEL ASSEMBLY BALANCE AND RUNOUT LIMITS

<table>
<thead>
<tr>
<th></th>
<th>Tire Position</th>
<th>19.5 Tire/Wheel</th>
<th>Over The Road Applications</th>
<th>On/Off-Road Applications</th>
<th>Wide Base Tire/Wheel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum total weight correction expressed in ounces of weight required to correct at rim diameter per rotating assembly</td>
<td>Steer</td>
<td>14 oz.</td>
<td>16 oz.</td>
<td>18 oz.</td>
<td>24 oz.</td>
</tr>
<tr>
<td></td>
<td>Drive/Trailer</td>
<td>18 oz.</td>
<td>20 oz.</td>
<td>22 oz.</td>
<td>28 oz.</td>
</tr>
<tr>
<td>Lateral runout for rotating assembly</td>
<td>Steer</td>
<td>0.095"</td>
<td>0.095"</td>
<td>0.110"</td>
<td>0.125"</td>
</tr>
<tr>
<td></td>
<td>Drive/Trailer</td>
<td>0.125"</td>
<td>0.125"</td>
<td>0.125"</td>
<td>0.125"</td>
</tr>
<tr>
<td>Radial runout for rotating assembly</td>
<td>Steer</td>
<td>0.095"</td>
<td>0.095"</td>
<td>0.110"</td>
<td>0.125"</td>
</tr>
<tr>
<td></td>
<td>Drive/Trailer</td>
<td>0.125"</td>
<td>0.125"</td>
<td>0.125"</td>
<td>0.125"</td>
</tr>
</tbody>
</table>

Note: If tire and wheel assembly is within these limits and ride problem still exists, refer to TMC RP 648, Troubleshooting Ride Complaints.
STORAGE

All tires should be stored in a cool dry place indoors so that there is no danger of water collecting inside them. Serious problems can occur with tube-type tires when they are mounted with water trapped between the tire and tube. Under pressurization, the liquid can pass through the inner liner and into the casing plies. This can result in casing deterioration and sudden tire failure. Most failures of this nature are due to improper storage. This is a particular problem with tube-type tires because of the difficulty in detecting the water, which has collected between the tire and tube. When tires are stored, they should be stored in a cool place away from sources of heat and ozone, such as hot pipes and electric motors. Be sure that surfaces on which tires are stored are clean and free from grease, gasoline, or other substances that could deteriorate the rubber. Tires exposed to or driven on these substances could be subject to sudden failure.

FLOOD DAMAGE

Tires that have been subjected and exposed to water from hurricanes, storms, floods, etc. for a substantial amount of time need to be discarded and not placed in service on consumer's vehicles. This applies to both new tires (unmounted) in inventory as well as those already mounted and installed on vehicles. Prolonged exposure to moisture can have a degenerative chemical effect on rubber and lead to potential failure later in the tire's life. If any questions arise, call Consumer Care at 1-888-622-2306.

CHAINS*

In order to satisfy legal requirements in many states, you may be required to use chains on truck tires. When the use of chains is required, the following recommendations should be followed:

1. Chains should only be utilized when necessary. The possibility of damage to the tire from the chains will increase as driving speed and length of travel increase, as well as with use on dry pavement. As a general rule, chains should be utilized only as long as required, and vehicle speeds should be kept relatively low.

2. Since manufacturers have size recommendations for radial ply tires, no matter what type of chain they manufacture, these size recommendations must be adhered to for optimized utility and performance.

3. Always be sure to check for proper clearances between chain and vehicle at the lower 6:00 o'clock position where the tires deflect due to load. When using tire chains, a minimum of two inches of space clearance between the dual assembly and the vehicle is necessary.

4. Also follow closely the mounting instructions and procedures of the chain manufacturer.

5. Specific chains are available for the MICHELIN® X One® tire product line.

* The information provided is for reference only. Chains-specific questions should be directed to the chains manufacturer.
RECOMMENDATIONS FOR THE USE OF DYNAMOMETERS

SEVERE DAMAGE can result in the crown area of radial truck tires when run on dynamometers for extended periods. Quite often the damage is internal and not discovered until after the vehicle has been put back in service.

In order to avoid the possibility of damaging MICHELIN® radial truck tires, adhere to the following time/speed restrictions and related test parameters. This applies to tire sizes with bead seat diameters of 19.5, 20, 22, 22.5, 24, and 24.5 inches.

NOTE: The times for the indicated speed in the chart are not additive.

<table>
<thead>
<tr>
<th>Speed (mph)*</th>
<th>MAXIMUM TIME (MINUTES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On 8 5/8" Dia. Rollers</td>
</tr>
<tr>
<td>62 (Max.)</td>
<td>2.5</td>
</tr>
<tr>
<td>50</td>
<td>3.5</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>7.5</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
</tr>
</tbody>
</table>

*Exceeding the legal speed limit is neither recommended nor endorsed.

Note that in the above speed/time table a significant increase in time is allowed on the 18-20" versus the 8 5/8" diameter roller. For example, at 30 mph time almost doubles from 7.5 minutes to 14 minutes.

- Allow a two-hour cool-down between tests.
- These limits are for an empty vehicle with tire pressures as indicated on the tire sidewall for maximum load.
- Allow a one-hour cool-down after each test before loading vehicle.
- The maximum allowable center-to-center distance between the two rollers in contact with a tire is a function of the sum of tire and roller diameter.

WARNING

If these times and/or speeds are exceeded, irreversible internal damage in the tire could result, leading ultimately to tire destruction. When it is anticipated that a test will exceed these time/speed values, use “surrogate” tires (a tire used in place of the normal tire).
SPINNING

Major tire damage can occur in a short period of time when a tire spins on a surface at high speeds. When the speed difference between the wheel with good traction and the wheel without becomes too great, the tire begins to disintegrate. This can occur on any slick surface (such as ice, mud, and snow) or on a dry surface where there is a variance in traction. The resulting difference in speed of the assembly can be as high as 4 times the registered speed indicated, resulting in tire and/or differential damage on the vehicle.

ROTATION

MICHELIN® radial tires should be rotated when necessary. If the tires are wearing evenly, there is no need to rotate. If irregular wear becomes apparent or if the wear rate on the tires is perceptively different (from axle to axle for drive tires and side to side for steer tires), then the tires should be rotated in such a manner as to alleviate the condition. There is no restriction on crisscross rotation, including directional steer tires that have worn 50% or more of the original tread.

When rotating tires, the following points should be taken into consideration:

- The load carried by a particular tire in a particular position. The inside tire of a dual mounting carries more load than the outside tire on the same axle.
- Adjacent dual tires should not differ more than 1/4” in diameter (4/32” in tread wear). If there is a difference in tread wear, fit the least worn tire in the outside position.
- Curbing on dual applications often damages tire sidewalls. If so, rotate the wheel and tire to the inner wheel position.
- Often it is beneficial to rotate the tires so that irregularly worn tires are moved to a position where they are turning in a direction opposite the original position.

Rotation procedures such as those recommended by vehicle manufacturers and those included in TMC RP 642A, Total Vehicle Alignment Recommendations for Maximizing Tire and Alignment Related Component Life may be followed.

Note Directional Tires: When mounting any new directional tire, ensure directional arrow points toward the direction of travel during the original 50% of tread life. Directional casings that have been removed from service and retreaded should be considered non-directional tires.

SIPING

There is no reason to ‘sipe’ new MICHELIN® tires. Michelin incorporates siping as needed in its designs to enhance tire performance. Experience suggests degradation in tread wear, vehicle ride and handling, and tire durability may be caused by poor or improper tire tread siping. Drive tires (M/S) are optimized to provide desirable traction in dry, wet, snow, and icy conditions. Siping does not automatically affect the MICHELIN warranty* that covers workmanship and material. However, if a tire fails or is rendered unserviceable as a result of ‘siping,’ the tire is not warrantable.

BRANDING

1. The following limits apply when branding MICHELIN® truck tires using equipment without accurate temperature control or which may exceed 465°F (240°C). (*Hand-held equipment is typically used for this “HOT BRANDING.”)
 a. Brand Temperature/Maximum Depth
 570°F (300°C) 1/64 inch (0.4 mm)
 480°F (250°C) 1/32 inch (0.8 mm)
 b. Only brand in the “BRAND TIRE HERE” area.

2. For equipment capable of “COLD BRANDING,” i.e., controlled temperatures below 465°F (240°C), the following restrictions apply:
 a. Temperature Maximum 465°F (240°C)
 b. Contact pressure Maximum 100 psi
 c. Time of contact Maximum 1 minute
 d. Character Height Maximum 1 inch
 e. Character Depth Maximum 0.040 inch (1.0 mm)
 f. Location:
 Circumferentially — in the “BRAND TIRE HERE” area.
 Radially — in the “BRAND TIRE HERE” area with no portion of any character extending more than 1” above the outline of the area.

*See warranty for details.
Many tire problems can be traced to mechanical conditions in the vehicle. Therefore, to obtain maximized tire performance, vehicles must be properly maintained.

MAJOR VEHICLE FACTORS WHICH AFFECT TIRE LIFE:

ALIGNMENT

Alignment refers not only to the various angles of the steer axle geometry, but also to the tracking of all axles on a vehicle, including the trailer. The dual purpose of proper alignment is to minimize tire wear and to maximize predictable vehicle handling and driver control. Toe misalignment is the number one cause of steer tire irregular wear, followed by rear axle skew (parallelism or thrust). One of the challenges of meeting this goal is that alignments are typically performed on a static, unloaded vehicle sitting on a level floor. The vehicle then operates over varying contoured surfaces, under loaded conditions, with dynamic forces acting upon it. Predicting the amount of change between static/unloaded/level - versus – dynamic/loaded/contoured is difficult because many variables affect the amount of change. Variables such as Steering System Compliance (i.e. “play”) must be considered in making alignment setting recommendations.

All of these misalignment conditions may exist alone or (more likely) in combination with other misalignment conditions. Sometimes it is these interactions that produce the outcomes that are especially undesirable. As an example, a tire running at slightly negative camber may perform especially badly if it is also subjected to tandem thrust misalignment. The conceptual understanding for this phenomenon is that because of the camber issue, the wear burden imposed by the thrust misalignment is not being shared equally by the entire tread surface. Further, a tire that is being operated in a misaligned condition may well transmit forces into the suspension from its interaction with the road. Some suspension systems manage those forces favorably. Others react in a way that imposes motions in the tire that are very unfavorable to the tire’s ability to yield a favorable wear outcome.

- **Tires that are not operated at a normal (perpendicular) angle to the road surface typically produce uneven tire wear. Tires that are fighting each other (because of conflicting alignment operating angles) produce unfavorable and sometimes irregular tire wear. Tires that are fighting each other due to highly compliant suspension components (compression/extension in the bushings or joints, or deflection of solid parts) will likely produce irregular wear forms.**
- **Alignments should be performed carefully using best alignment practices. (For example, ensuring that the suspension is at the correct ride height and that the suspension has been settled out by being moved forwards/backwards, etc.)**
- **Alignments should be conducted in the most representative loading condition and ride height for the expected usage.**

We therefore recommend referring to *TMC RP 642A, Total Vehicle Alignment Recommendations for Maximizing Tire and Alignment Related Component Life*, which has established industry recommended target values for the alignment of vehicles.

STEER AXLE GEOMETRY

Since very few vehicles continue to use Center Point Steering, the following recommendations are based on the more common Inclined Kingpin Steer Axle Geometry.

TOE

Toe is typically the most critical alignment condition affecting steer axle tire wear. The purpose of setting toe at a given specification is to allow the tire to run straight during normal operating conditions. Too much toe-in results in scrubbing from the outside inward on both tires, and too much toe-out results in scrubbing from the inside outward on both tires.

Total toe is the angle formed by two horizontal lines through the planes of two wheels. Toe-in is when the horizontal lines intersect in front of the wheels or the wheels are closer together in front than in back. Toe-out is when the horizontal lines intersect behind the wheels or the wheels are closer together in back than in front. Toe-in is commonly designated as positive and toe-out as negative.
Steer axle toe is adjustable to reduce wear to the leading edge of the tire and also to avoid road wander. Toe is adjusted in a static, unloaded condition so that the tires will run in a straight line under a dynamic, loaded condition.

The toe measurement will probably change from unloaded to loaded condition. The amount of change will vary with axle manufacturer, axle rating, and steering arm geometry; but it is still fairly predictable. Front axles on most popular Class 8 long haul tractors will change in the direction of toe-out about 1/32” (0.8 mm or .05 degree) for each 1000 pounds of load increase on the steer axle. Cabover tractors with set-back-front-axles typically experience less steer axle change in load from bobtail to loaded than do other configurations. Wheelbase and fifth wheel location are also major factors affecting how much load change the steer axle will experience.

Note: Additional consideration would be effects of air ride suspension systems, rack and pinion systems, and disc air brakes on steer tire wear.

A misaligned (dog-tracking) trailer may also be the cause of steer tire wear.

See Section Nine, Appendix under Conversion Table on Page 117 for conversion of fractions in inches to millimeters and degrees. See Section Nine, Appendix under Alignment on Pages 118-119 for a field method for verification.

TANDEM AXLE PARALLELISM (SKEW - THRUST)

Tandem axle parallelism is critical because it can have a detrimental effect on all ten tires on the tractor. Non-parallel drive axles tend to push the tractor into a turn in the direction that the axle ends are closest. In order for the vehicle to go straight, the driver must correct by steering in the opposite direction. The vehicle can then go straight, but all ten tires are at an angle to the direction of travel, causing scrubbing. Excessive tandem axle non-parallelism is usually detected in steer tire wear. If one steer tire is scrubbing from the outside inward and the other steer tire is scrubbing from the inside outward, then tandem axle alignment is suspect. A similar pattern can be generated by the driver’s compensation for a non-lubricated 5th wheel or from a dog tracking trailer. This should not be confused with a light level of toe-in on the right front and lighter toe-out wear on the left front that may be the result of secondary highway road crown.

THRUST ANGLE (TRACKING)

The relationship of the geometric centerline of the vehicle and the direction that the axle points generates a thrust angle. Ideally this relationship would result in a 0 degree value when the axle centerline is perpendicular to the geometric centerline. However, any deviation from this setting will increasingly cause the vehicle to travel away from the straight line, causing the tires to “dog track” and scrub. Tracking to the right generates a positive thrust angle; tracking to the left creates a negative thrust angle.
CAMBER
Camber is the angle formed by the inward or outward tilt of the wheel referenced to a vertical line. Ideal camber may vary in different applications and in different axle positions as affected by load distribution (i.e. front axle variance of 6,000 to 12,000 pounds, drive axle range of 8,000 to 17,000 pounds, and trailer axle range of 4,000 to 20,000 pounds).
- Camber is positive when the wheel is tilted outward at the top.
- Camber is negative when the wheel is tilted inward at the top.
- Excessive positive camber may cause smooth wear on the outer half of the tire tread.
- Excessive negative camber may cause wear on the inner half of the tire tread.
- Camber only causes a noticeable “pull” if on the steer axle the right and left wheel camber angles are not very close in magnitude (greater than 1/2 degree).
- Negative camber can also be a cause of inside shoulder wear on trailer axle in dual or single configuration.
- A free-rolling tire is more sensitive to camber than a tire twisting or turning under the effect of torque.
- A wide tire with a relatively low aspect ratio is more sensitive to camber than a narrow high aspect ratio tire.
- Generally, the vehicle will pull to the side with the most amount of positive camber.

Steer position: Steer axles (which are generally, but not always, a forged axle) are designed with static unloaded positive camber and tend to produce better tire wear when provided with slightly negative camber due to the effects of cornering forces, load transfer, and steering Ackerman geometry, which tend to stress and produce outside shoulder wear during turning maneuvers. In the interest of more even overall wear, it is therefore advantageous to let the wear be biased toward the inside shoulder (via slightly negative camber) during straight ahead driving.

Driver position: Generally, camber is not a major contributor to drive axle irregular wear, although combined with dual position toe-in or toe-out may cause the onset of a wear pattern.

Trailer position: Trailer axles are typically fabricated from steel tubing with spindles welded to the ends. They are usually built straight, so there will be some negative camber induced when installed under a trailer. Additional loading of the trailer will cause additional negative camber. Most trailer axles deflect to about -0.5 degree camber at 17,000 pounds per axle loading.

Camber can accelerate shoulder wear on dual or single tires. Higher degrees of negative camber will show up on the inner shoulder, and positive camber on the outer shoulder. Wide single tires seem more susceptible to camber induced wear.

Camber correction by bending axles is NOT RECOMMENDED by axle manufacturers, nor endorsed by Michelin®. Consult the axle manufacturer if camber is found to be incorrect (outside manufacturer specification).

CASTER
Positive (+) caster is the backward tilt at the top of the kingpin when viewed from the side. Negative (-) caster is the forward tilt at the top of the kingpin when viewed from the side.

The purpose of caster is to provide self-aligning forces on the steer tires to stabilize the vehicle when driving straight down the road under braking, free wheeling, and power conditions.

Insufficient caster reduces stability and can cause wander. Excessive caster increases steering effort and can cause shimmy. Either of these conditions may also have a detrimental effect on tire wear. Excessive caster beyond the vehicle manufacturer’s specification may result in induced camber causing excessive tire wear, particularly fleets that are in local and regional operations. Caster is adjustable with shims. Adjusting only one side is not recommended. Caster on both sides should be equal or not more than 1/2 degree difference. Generally, the vehicle will pull to the side with the least amount of positive caster.
STEER AXLE SETBACK
(STEER AXLE SKEW)

Any measured deviation left (negative) or right (positive) away from perpendicular to the centerline of the vehicle is called the setback.

TOE-OUT-ON-TURNS
(TURNING RADIUS)

Toe-out-on-turns is the difference in the arcs described by the steering tires in a turn. The purpose is to prevent the inside tire from scrubbing around a turn since the outside tire (loaded tire) determines the turning radius of the steer axle. This is the Ackerman Principle. Improper geometry results in wheel scrub in turns, which generally appears as toe wear on the tire. More specifically, Ackerman wear shows itself as a rounded edge radial feather wear across the tread area of the tire. This angle is more important on a city vehicle with its many turns than on a line haul unit. Ackerman geometry is dependent upon the steering axle track-width and wheel base of a vehicle. When the turning angle or wheel base changes from the original specification, Ackerman is affected.

TMC RECOMMENDED ALIGNMENT TARGETS
(Value representing industry-established midpoint.)
For more information refer to TMC RP 642A, Total Vehicle Alignment: Recommendations for Maximizing Tire and Alignment-Related Component Life, Appendix 9.

<table>
<thead>
<tr>
<th>Alignment Specification (1)</th>
<th>Target Value (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer Axle</td>
<td></td>
</tr>
<tr>
<td>Total Toe</td>
<td>+1/16 inches (0.08 degrees, 0.06 inches, 1.5 mm/M)</td>
</tr>
<tr>
<td>Camber</td>
<td>Less than 1/4 degree (3)</td>
</tr>
<tr>
<td>Caster</td>
<td>Left: +3.5 degrees Right: +4.0 degrees</td>
</tr>
<tr>
<td>Setback</td>
<td>0 degrees / 0 inches</td>
</tr>
<tr>
<td>Drive, Trailer, and Dolly Axles</td>
<td></td>
</tr>
<tr>
<td>Thrust (Square)</td>
<td>0 degrees / 0 inches</td>
</tr>
<tr>
<td>Scrub (Parallelism)</td>
<td>0 degrees / 0 inches</td>
</tr>
<tr>
<td>Lateral Offset</td>
<td>0 inches</td>
</tr>
</tbody>
</table>

(1) All specifications are measured with vehicle in static, unladen condition.
(2) All specifications are stated in inches or degrees (where applicable).
(3) Camber angle changes normally involve bending the axle beam, which may void the axle manufacturer’s warranty. If the measurement exceeds this value consult the vehicle, axle, and/or alignment equipment manufacturer.

PERIODIC ALIGNMENT CHECKS

An aggressive alignment preventative maintenance program should include the following periodic checks:

1. Upon delivery of new vehicles. Even though OEMs make a concerted effort to properly align vehicles at the factory, shifting and settling can occur during delivery. Camber and caster may not change much, but toe and tandem axle parallelism may change sufficiently to set up undesirable tire wear patterns if not corrected upon receipt.

2. At the first maintenance check. Post break-in alignment checks should be done between 15,000-30,000 miles, but no later than 90 days after the first in-service date. If shifting and settling did not occur during delivery, it may occur during the first few thousand miles of operation. Many OEMs recommend verification of torque on suspension/frame components after a few thousand miles of operation. A thorough alignment check should be made during this inspection (after torque verification). Consideration should be given to different torque requirements on metric and standard bolts.

3. When new steer tires are installed or front-end components are replaced. The steer tires coming out of service can tell a story of good or bad alignment. With this feedback, an alignment program can continue to improve. Without feedback, the best an alignment program can do is stay at its current level.

4. When tire wear indicates a concern. “Reading” tire wear can help identify alignment issues. Unfortunately, correcting the alignment does not necessarily correct the tire wear pattern once an undesirable wear pattern has been established.
ALIGNMENT EQUIPMENT

Alignment equipment exists that ranges from simple and inexpensive to sophisticated and costly. One factor that is common to all types of alignment equipment is that the person using it is extremely important to the resulting tire and vehicle performance! Calibration is another critical factor in maintaining the accuracy of the system – follow manufacturers’ recommendations. Some fleets have obtained excellent results with a good “scribe and trammel bar” and paying strict attention to toe and axle parallelism. Other fleets establish permanent records, make adjustments more easily, have more information for trouble-shooting, and obtain excellent results with the more expensive equipment.

The common ground is that the person using the equipment understands it, uses it properly, and follows the procedures consistently.

Michelin® developed the BibAlignment System as a very simple, accurate, and repeatable method of establishing the position of a vehicle’s axles relative to each other. Through the use of a computer program, the highly portable and cost-effective BibAlignment System calculates the corrections necessary to improve the vehicle’s axle parallelism. It locates the centerline of drive and trailer axles and projects this centerline to the ground. These points are measured, recorded, and entered into the computer program. The resulting data concerning the axle alignment and recommended corrections may be printed for historical reference. Contact your local MICHELIN Representative for ordering information.

Heavy truck alignment has evolved to a precise science. The “field check” techniques below may be used to detect a problem condition but are not recommended for making adjustments/corrections. Proper alignment equipment should be used if a decision is made to complete this service.

FIELD CHECK TECHNIQUES

TOE: This wear on the tread occurs due to the shearing action created by side forces resulting from excessive toe-in or toe-out. If the toe is properly set, the steer tires will feel even and smooth when you move your hand across the tread surface. If the front tires have excessive toe-in, a feathering wear will be created. This can be felt very easily with your hand. The tread will feel smooth when you move your hand in across the tire, but you will feel a drag or resistance when you move your hand back out across the tread. If the front tires have excessive toe-out, the opposite will be evidenced. The resistance will be felt going across the tread, with no resistance felt while being withdrawn. A simple Rule of Thumb to remember when analyzing steering tire wear is “Smooth In” means Toe-In; “Smooth Out” means Toe-Out.

A quick field check procedure is done on elevated, dry tires, and with a can of spray paint or marker, highlight a section of the tread area around the tire. With a sharp pointed scribe, mark a thin line in the highlighted area while rotating the tire. Repeat this process on the other steer tire. Lower the vehicle on folded plastic bags. Once the steer tires are down, bounce the truck to make sure the suspension is relaxed, and verify that the wheels are pointing straight ahead. Then measure from side to side between the scribed lines, first rear, then front, with a tape measure or a fine-lined toe gauge to determine relative toe. Subtract front from rear: positive result indicates toe-in, negative is toe-out. See Section Nine, Appendix under Alignment – Field Method (Pages 118-119) for complete procedures.
Parallelism: On a tractor with tandem drive axles, the two axles should be parallel to one another. Any deviation from this parallel position will create a tandem skew or scrub angle. This angle should be no larger than one tenth of a degree. An easy method of checking this angle is to measure the distance between the ends of the axle hubs on each side of the tractor. The difference between these two measurements should be no larger than 1/8 inch for a tandem tractor/truck and no larger than 1/16 inch on a tandem axle trailer. The easiest way of accomplishing this measurement is by using a trammel bar. The pointers on the trammel bar must fit in the axles' centering holes on both sides of the vehicle.

For example, if the ends of the drive axles on the left side of the vehicle are closer together than the axle ends on the right side, this will cause the vehicle to pull or drift to the left.

AXLE PARALLELISM AND TRACKING

In the straight-ahead position, the rear wheels of a vehicle should follow the front wheels in a parallel manner. Wheels that are out-of-track can cause excessive tire wear. Failure of the wheel to track is usually due to the following causes:

- Master spring-leaf broken
- Incorrect air spring (bag) height
- Worn springs
- Auxiliary leaves broken
- Loose “U” bolts
- Incorrect or reverse springs
- Bent frame
- Locating rods or torque rods improperly adjusted
- Locating rod or torque rod bushings worn excessively

Failure of the wheels to track is usually quite visible when one follows the vehicle on the highway. It is possible that, due to one of the above causes, no uneven wear manifests itself on the rear tires, but an uneven wear pattern may show itself on the front tires. This is because rear tires may push the vehicle off course and give some toe-out-on-turns in the straight-ahead position to the front tires. Hence, the driver makes a correction to offset the steering action caused by the rear wheels.

If the rear axle of a vehicle is not at right angles to the chassis centerline, the front tires are affected, showing misaligned wear. In the diagram below, the position of the rear axle of the vehicle has been altered because of a weakened left side spring – so that the rear axle on the left side is further from the front axle than the rear axle on the right side.

In this illustration of a 4x2 configuration, the angle of the rear axle causes its wheels to point to the left side so that the rear end of the vehicle is, in fact, self-steered in that direction. The vehicle would then steer itself to the right – unless the driver takes corrective action. If the driver wishes to travel straight ahead, he will naturally compensate by turning his steering wheel. This action introduces a turning moment as if the vehicle were making a turn although it is moving in a straight line due to the toe-like posture of the front wheels. It is more difficult to identify this concept with additional drive axles and the placement of movable 5th wheels. For this reason, the onset of misalignment wear patterns on the front tires may be apparent, even though the lateral forces may be slight and the front wheel alignment settings may be correct.
HOW TO CHECK AXLE PARALLELISM AND TRACKING:

With the vehicle on a flat surface and with the suspension in a relaxed position, select two points on the front and rear axles. These two points on each axle must be equal distance from the chassis center (e.g., at the point where the springs meet the axles). Using a plumb line, mark four points on the ground, move the vehicle away, and measure the distance between the marks as shown on the diagram.

A more detailed field type procedure is recommended by Michelin and can be found in the Section Nine, Appendix under Alignment – Field Method (Pages 118-119).

For Truck/Tractor: The Technology and Maintenance Council recommends no more than 1/8 inch between axle ends. If AD = BC and DE = CF, the axles are parallel. If X = X’ and Y = Y’, the wheels are symmetrical or tracking.

For Trailers: The Truck Trailer Manufacturers Association (TTMA) recommends no more than 1/16 inch between axle ends and 1/8 inch maximum from the trailer kingpin to the lead axle ends. If AD = BC and CE = DE, the axles are parallel and symmetrical. (Reference: TTMA RP No. 71 Trailer Axle Alignment.)
TIRE WEAR PATTERNS DUE TO MISALIGNMENT

It should be noted that some wear patterns might be from multiple causes. Additional information may be obtained in the *TMC RP 216B, Radial Tire Conditions Analysis Guide* and *MICHELIN Americas Truck Tire Commercial Tech Videos* (MWV43100) about the “Fundamentals of Tire Wear” and “Scrap Tire Analysis.”

Toe Wear – The typical wear pattern that develops from excessive toe is a feather edged scuff across the crown. Excessive toe is usually seen on both steer tires.

Free Rolling Wear – Wear at the edge of a rib circumferentially, which may or may not affect the entire rib widths. Intermittent side forces due to wheel assembly instability cause contact pressure variations, resulting in this type of wear. Generally, due to excessive looseness in the suspension and/or steering components, this is also found in slow wearing positions at high mileage. Insufficient caster and excessive lateral tire/wheel runout also are contributing factors.
Camber Wear – If the axle has excessive camber, partial or total wear of the shoulder will occur. For static unloaded vehicles, camber readings for steer positions should fall within the range of 0 to 1/4 degree positive (0.0 to 2.5 mm), and trailer positions should fall within the range of ± 1/4 from 0 degree (± 2.5 mm from 0).

Cupping Wear – Any loose or worn component in truck steering or suspension systems can cause odd wear, cupping, and flat spots. Check for loose wheel bearings, worn shock absorbers, steering gear lash, worn tie rod ends, and kingpins. Check for possible mis-mount conditions.
Flat Spotting Wear – Localized wear across the tread width. Causes include brake lock, brake imbalance, out of round brake drums, axle hop, or skip. A tire being parked on a surface containing hydrocarbon oils, chemicals, and solvents can also cause this type of wear pattern. The affected area of the tread will wear more rapidly, leaving a flat spot.

Diagonal Wear – Localized wear diagonally across the tread width. Side forces imposed by a combination of toe and camber create diagonal stress in the footprint of the tire. Localized wear patterns tend to follow this same direction creating diagonal wear. For steer positions, causes include excessive toe combined with tandem drive axle misalignment, incorrect steering angle in turns, worn parts, and/or excessive camber setting. For trailer positions, causes include tandem trailer misalignment, negative camber, and loose or worn components.
BRAKING SYSTEMS AND ISSUES
Air brake issues as they apply to tire wear and damages can result from imbalance or component concerns.

Distorted, brittle, and/or discolored rubber in the bead area are signs of the “outside to inside” breakdown of rubber products as a result of seating on a wheel surface, which is heated to a temperature beyond the limit that the rubber products can tolerate. This damage starts at a temperature in the mid-200 degree Fahrenheit range, with accelerated damage occurring above the 300 degree Fahrenheit range.

1. Brake imbalance can be the result of the air system, including valves, not actuating the brakes simultaneously. This may be the result of dirt, leaks, and/or valve cracking pressure. In a tractor/trailer combination, the more rapid brake application time now being used (up to twice as fast as pre FMVSS*-121 systems) can result in a brake imbalance due to combinations of old tractors with new trailers or new tractors with old trailers.

2. Component situations, such as out-of-round brake drums or unevenly worn brake shoes, also result in tires acquiring odd wear and flat spots.

3. Another source of brake imbalance is the improperly adjusted slack adjuster. Any of these brake imbalance situations can result in one or more wheel positions locking up and flat spotting the tires.

4. Brake drums with balance weights thrown may result in ride disturbance.

5. Brake lock (flat spots) conditions may be evidence of deficiency in the Anti-Lock Brake System.

*FMVSS - Federal Motor Vehicle Safety Standards

SUMMARY OF TIRE ISSUES DUE TO BRAKES

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Heat</td>
<td>1. Overuse on down grades due to improper gear. 2. Brake dragging due to mis-adjustment of wheel bearings. 3. Repeated stops without cooling time. 4. Improper adjustment or braking balance leads to excessive amount of braking in one or more wheel positions.</td>
<td>Bead damage to the tire ranging from simple distortion to complete unwrapping of the casing from the bead wire.</td>
</tr>
</tbody>
</table>
BRAKE HEAT OVERVIEW

Brake temperatures on trucks often reach very high temperatures. Brake drums can reach temperatures of 600°F or more and are in very close proximity to the wheels. This heat can be easily transferred to the wheels and tires. Brake drum heat is transferred to the wheel primarily through radiation and convection. The hot brake drum radiates heat in all directions to the wheel. In addition, the drum heats the air between the drum and the wheel. The heated air rises and transfers additional heat energy to the wheel through convection. Much of the heat is transferred to the wheel in the bead mounting area due to its close proximity to the brake drum. The wheel then directly conducts heat to the tire bead resulting in elevated temperatures in the tire bead area.

Excessive bead heat can affect tire life in many truck tire applications. Vehicles in urban and refuse service are most commonly associated with bead heat issues, but any application that experiences hard braking can be affected.
Results of bead heat:

1. **Immediate failure**: In some cases, after periods of hard braking where brake drums reach very high temperature (in excess of 600° F), immediate failure can occur. This normally occurs when a truck is brought to a stop for a period of time with very high brake temperatures. Often this occurs when an over the road truck stops at a truck ramp at the bottom of a long descent. As the heat rises from the brake drum, there is excessive heat buildup in the portion of the tire bead directly above the brake drum (inner bead of inside dual). The high temperature can cause a breakdown of the rubber products in the bead area and allow the steel body cables to unwrap from the bead. This could result in a rapid air loss occurrence. This phenomenon is also common in urban and refuse fleets when the driver stops for a break after a period of hard braking.

2. **Premature aging of the casing**: Heat is a tire’s worst enemy! A tire subjected to high heat conditions over an extended period of time will experience accelerated aging of the rubber products. The accelerated aging may result in a blowout during operation, or it may render the casing unsuitable for retread. The graph on the previous page demonstrates how operating with bead temperatures in excess of 200°F will significantly reduce your casing life.

Bead damage as a result of brake heat is recognizable in 3 stages of severity. In the first stage, the bead starts to turn inward. This can be visibly identified on the tire when it is dismounted. A straight edge placed across the beads from one bead to the other no longer rests on the bead point, but now rests closer to the bead bearing area.

The second stage occurs when the rubber in the bead area starts to split or crack, indicating that the steel casing plies are starting to unwrap.

The third stage is when the casing ply fully unwraps from the bead. In extreme cases the casing ply unwraps from the bead all the way around the tire. At this point the tire completely separates from the bead wire. The bead wire can entangle itself around the axle if this type of separation occurs.
5TH WHEEL MAINTENANCE AND PLACEMENT

Placement of the 5th wheel can be determined by the need to properly distribute the load over the drive tandems and the steer axle for legal loads. It can also be placed to lengthen or shorten the overall length of the tractor-trailer unit. However, with sliding 5th wheels, many drivers place the 5th wheel to give the smoothest ride and easiest steering. The placement and movement of the 5th wheel can change the tire loading substantially, causing tire overload or tire underload conditions.

Insufficient lubrication of the 5th wheel is a major cause of poor vehicle handling. Distortion of the 5th wheel plate will cause a similar condition to lack of lubrication and dog tracking of the trailer.

A 5th wheel in the most rearward position, combined with stiff front axle springs, can cause the front tire to periodically unload, leading to vehicle shimmy and irregular tire wear. Vehicle manufacturers usually recommend a 5th wheel placement that results in payload transfer to the front axle. Improper front axle load distribution can adversely affect braking and handling, which can result in excessive tire wear.
SUSPENSIONS

Forming the link between the truck and the tire, the suspension system provides a very important contribution to tire performance. The suspension must support the load and maintain the tire in the proper operating position on the road. If the suspension is in good operating order, the tires will track straight and be evenly loaded. This promotes slow, even wear and low tire cost-per-mile.

Different truck manufacturers use different suspension systems. Some of these are adjustable for making minor changes, and some are not adjustable. All suspensions have parts that move and are, therefore, subject to wear. Worn or broken suspension parts are one of the main causes of irregular tire wear and handling concerns. (Ref. – Quick checks for system and suspension faults on Pages 60-62.) When observing irregular wear on a tire, first check for worn or broken front and rear suspension parts.

AIR SUSPENSION SYSTEMS

As vehicle manufacturers move away from multiple springs, there is an increased need to dampen the effect of road shock. Air suspension systems consist of fasteners and bushings with various components such as air springs, air or gas shocks, torque arms, air lines and valves held together by nuts and bolts. Day to day operations generate a constant twisting movement to all these parts and greater awareness and maintenance diligence should be paid to wear and proper torque to ensure proper performance of the system and the effect this has on tire life. All torque values should be verified to manufacturer’s specification, and new shock absorbers should be considered when installing new tires so as to maximize tire life. Shock absorbers used on air ride suspensions should typically provide effective dampening control for 150,000 miles of on-highway operations (100,000 for vocational applications). Refer to TMC RP 643, Air-Ride Suspension Maintenance Guidelines on air suspension systems.

Routine inspection of trailer air suspensions should be scheduled to inspect connectors and bushings per manufacturer instructions. Pivot Bushing inspection should consist of taking measurements before disassembly to complete your inspection, complying with warranty* procedures, and replace the bushing if cracks or complete separation of the rubber is present.

QUICK CHECKS FOR TRAILER SYSTEM FAULTS

<table>
<thead>
<tr>
<th>QUICK CHECKS WOULD INCLUDE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Verify OEM alignment after 1,000-3,000 in-service miles</td>
<td>• Alignment (induced toe value at each dual position, negative camber, parallelism)</td>
</tr>
<tr>
<td>• Verify rails are straight</td>
<td>• Worn or loose wheel bearings</td>
</tr>
<tr>
<td>• Loose or missing fasteners, look for elongated holes</td>
<td>• Brake imbalance</td>
</tr>
<tr>
<td>• Damaged or bent brackets</td>
<td>• Slow release of trailer brake systems</td>
</tr>
<tr>
<td>• Look for wear at u-bolts and springs – signs of movement</td>
<td>• Operational conditions, high scrub application</td>
</tr>
<tr>
<td>• Look for signs of rust at track rod to indicate movement</td>
<td>• Tire scrub/dragging at dock deliveries (commonly called Dock Walk)</td>
</tr>
<tr>
<td>• Inspect torque arm clamp nuts and bolts for proper torque (check threads to see if stripped)</td>
<td>• Air pressure maintenance (improper for operation)</td>
</tr>
<tr>
<td>• Verify spring beams are centered on hanger; if not, check alignment</td>
<td>• Overloaded/underinflated, high speed empty hauls</td>
</tr>
<tr>
<td>• Slider assembly movement, loose attaching bolts, u-bolt torque</td>
<td>• Mismatched pressure by dual position or axle</td>
</tr>
<tr>
<td>• Air-ride suspension movement</td>
<td>• Mismatched tread depth/tire design by dual position</td>
</tr>
<tr>
<td>• Insufficient lubrication</td>
<td>• Improper tread depth for application/operation</td>
</tr>
<tr>
<td>• Worn shocks or springs</td>
<td>• New steer tire(s) mixed in trailer positions</td>
</tr>
<tr>
<td>• Bushings cracked or separated (inspect per manufacturer procedures)</td>
<td>• Tire rotated from steer or drive with existing wear</td>
</tr>
<tr>
<td></td>
<td>• Improper tire assembly mounting</td>
</tr>
<tr>
<td></td>
<td>• Driving habits, improper use of trailer brakes</td>
</tr>
</tbody>
</table>

* See warranty for details.
QUICK CHECKS FOR FRONT SUSPENSION FAULTS

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
</table>
| Thumps and Knocks from Front Suspension | • Loose or worn ball joints
 • Loose front suspension attaching bolts
 • Missing adjusting shims
 • Loose shock absorber mountings
 • Check for worn or damaged spring eye bushings |
| Groans or Creaks from Front Suspension | • Loose attaching bolts
 • Bent control arm or steering knuckle
 • Worn kingpins or kingpin bushings |
| Squeaks from Front Suspension | • Coil spring rubbing on seat |
| Wander or Shimmy | • Worn tie rod ends
 • Worn kingpins or kingpin bushings
 • Loose suspension attaching bolts
 • Weak shock absorbers
 • Weak front springs
 • Incorrect front end alignment
 • Steering shaft U joint |
| Frequent Bottoming of Suspension on Bumps | • Weak front springs
 • Weak shock absorbers |
| Front End Sag | • Incorrect front wheel alignment
 • Worn kingpins or kingpin bushings
 • Loose front suspension attaching bolts
 • Weak shock absorbers
 • Weak front springs
 • Bent control arm or steering knuckle
 • Worn tie rod ends
 • Excessive steering system compliance
 • Steering shaft U joint
 • Loose wheel bearing |
| Irregular or Excessive Tire Wear | • Incorrect front wheel alignment
 • Worn kingpins or kingpin bushings
 • Loose front suspension attaching bolts
 • Weak shock absorbers
 • Weak front springs
 • Bent control arm or steering knuckle
 • Worn tie rod ends
 • Control arm shaft bushings need lubrication
 • Worn kingpins or kingpin bushings |
| Floating, Wallowing, and Poor Recovery from Bumps | • Weak shock absorbers
 • Weak front springs |
| Pulling to One Side While Braking | • Worn kingpins or kingpin bushings
 • Loose suspension attaching bolts
 • Bent control arm or steering knuckle
 • Weak front springs
 • Weak shock absorbers
 • Loose wheel bearing
 • Brake adjustment |
| Rough Ride and Excessive Road Shock | • Damaged shock absorbers
 • Weak shock absorbers
 • Weak springs
 • Control arm shaft bushings need lubrication
 • Worn kingpins or kingpin bushings |
| Excessive Steering Play | • Worn kingpins or kingpin bushings
 • Loose suspension attaching bolts
 • Worn control arm shaft bushings
 • Weak front springs
 • Worn tie rod ends
 • Steering shaft U joint
 • Loose wheel bearing |
| Pulls To One Side | • Worn kingpins or kingpin bushings
 • Loose suspension attaching bolts
 • Worn control arm shaft bushings
 • Weak front springs
 • Incorrect wheel or axle alignment
 • Bent control arm or steering knuckle |
| Hard Steering | • Worn kingpins or kingpin bushings
 • Incorrect front end alignment
 • Bent control arm or steering knuckle |
QUICK CHECKS FOR REAR SUSPENSION FAULTS

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock Absorbers</td>
<td>• Improperly installed mounts and/or bushings</td>
</tr>
<tr>
<td></td>
<td>• Damaged or leaking shocks</td>
</tr>
<tr>
<td>U-Bolts</td>
<td>• Not torqued to specification</td>
</tr>
<tr>
<td></td>
<td>• Improperly torqued due to mismatched metric and standard bolts with different specifications</td>
</tr>
<tr>
<td>Suspension System</td>
<td>• Loose attaching bolts</td>
</tr>
<tr>
<td></td>
<td>• Worn bushings in shocks, spring hangers, torque rods</td>
</tr>
<tr>
<td></td>
<td>• Missing alignment adjusting shims</td>
</tr>
<tr>
<td></td>
<td>• Excessive drive axle offset</td>
</tr>
<tr>
<td></td>
<td>• Excessive sway bar movement</td>
</tr>
<tr>
<td></td>
<td>• Worn hanger pins allowing axle movement</td>
</tr>
<tr>
<td></td>
<td>• Improperly functioning ride height control system</td>
</tr>
<tr>
<td>Wheels out of Track</td>
<td>• Master or auxiliary spring-leaf broken</td>
</tr>
<tr>
<td>(Dog Tracking)</td>
<td>• Incorrectly installed springs</td>
</tr>
<tr>
<td></td>
<td>• Worn springs</td>
</tr>
<tr>
<td></td>
<td>• Loose U-bolts</td>
</tr>
<tr>
<td></td>
<td>• Bent frame</td>
</tr>
<tr>
<td></td>
<td>• Torque rods improperly adjusted</td>
</tr>
<tr>
<td></td>
<td>• Torque rod bushings worn excessively</td>
</tr>
<tr>
<td>Alignment</td>
<td>• Incorrect parallelism, skew, scrub</td>
</tr>
<tr>
<td></td>
<td>• Dual position toe-in or out (induced toe value at each drive wheel)</td>
</tr>
<tr>
<td></td>
<td>• Camber</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>• Wheel bearings loose or damaged</td>
</tr>
<tr>
<td></td>
<td>• 5th wheel placement</td>
</tr>
<tr>
<td></td>
<td>• 5th wheel and chassis lubrication</td>
</tr>
</tbody>
</table>
MICHELIN® X ONE® TIRES

MICHELIN® X One Tire Air Pressure Maintenance Practices
Comparative MICHELIN X One Tire Sizes
Wheels
Axle Track Width
Vehicle Track
MICHELIN X One Mounting Instructions
MICHELIN X One Retread and Repair
Repair Recommendations
Retread Recommendations
Chains
Gear Ratio
Footprint Comparisons to Dual Tire Fitments

For additional information about MICHELIN® X One® Tires, refer to the MICHELIN® X One® Truck Tire Service Manual (MWL43101).
MICHELIN® X ONE® TIRE PRESSURE MAINTENANCE PRACTICES

Tire pressure maintenance advice for users of the new MICHELIN® X One® wide single truck tires (445/50R22.5 LRL and 455/55R22.5 LRL).

Proper air pressure maintenance is critical to obtain optimized performance from these tires. Due to the unique casing design of the MICHELIN® X One® tire, traditional air pressure adjustment practices for dual tires may not apply to MICHELIN® X One® tires.

Cold inflation pressure should be based on maximum axle load in daily operation. Cold inflation pressures must not be lower than indicated in the tables below for actual axle loads. For additional information, please consult the MICHELIN® Truck Tire Data Book (MWL40731).

A 10 psi incremental change in tire inflation will alleviate most wear forms derived from vehicle anomalies, driver influence, and/or application. Always refer to actual axle loads to determine the initial recommended cold inflation pressure.

For example, load range L (20 ply) tires like the 445/50R22.5 MICHELIN X One® XDA® tires have a maximum air pressure of 120 psi (cold) with a weight carrying capacity of 20,400 lbs. per axle. If the tire is mounted on a vehicle carrying 17,480 lbs. per axle, the appropriate air pressure is 100 psi (cold).

For trailers equipped with an air pressure monitoring system, system pressure should be regulated based on the maximum load the axle will carry and be at the cold equivalent for this load.

When an aluminum wheel is used in the outset position, a TR543E or the new TR553E valve can be used. It is recommended that you verify air valve stem torque on all wheels put into service. When installed, they should have correct torque, using the proper tool at 80 to 125 in./lbs. (7 to 11 ft./lbs.) for aluminum wheels and 35 to 55 in./lbs. (3 to 5 ft./lbs.) for steel wheels. To check for slow leaks at the valve stem, use either a torque wrench by hand or spray a soapy solution on the valve to see if it is loose. To prevent galvanic corrosion on aluminum wheels, lubricate the threads and o-ring of the valve stem with a non-waterbased lubricant before installation.

Single tire fitments have proven themselves in numerous North American applications and are expected to grow in popularity with fleets. Single tires are, of course, the norm on steer axles, and are proven, valid solutions on trailers and on driven axles of tandem axle (6x4) tractors. However, recent handling studies indicate that for certain types of commercial single axle (4x2) tractors pulling trailers, the vehicle dynamics are such that handling may be degraded in the event of a tire failure when fitted with singles. No other vehicle types or wheel positions have shown any enhanced handling issues with single tires. In the interest of caution, Michelin recommends that single axle (4x2) tractors fitted with MICHELIN® X One® tires on the driven axles always be equipped with an Electronic Stability Program (ESP). Without an ESP on the 4x2 tractor, four tires are recommended across the driven axle rather than two tires. Once again, no other vehicle types are affected by this recommendation. Please note: This does not change Michelin's long-standing position that all types of motor vehicles can be controlled in the event of a rapid air loss under normal, legal driving conditions. Michelin maintains that vehicle control in rapid air loss situations is a matter of driver education and training.

WHEEL DIAMETER 22.5"

<table>
<thead>
<tr>
<th>Wheel Diameter</th>
<th>PSI</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
<th>100</th>
<th>105</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>Maximum Load and Pressure on Sidewall</th>
</tr>
</thead>
<tbody>
<tr>
<td>445/50R22.5 LRL X One XDA, X One XDA- HT Plus, X One XDN2, X One XTA, X One XTE</td>
<td>LBS SINGLE</td>
<td>13880</td>
<td>14620</td>
<td>15360</td>
<td>16060</td>
<td>16780</td>
<td>17480</td>
<td>18180</td>
<td>18740</td>
<td>19560</td>
<td>20400</td>
<td></td>
<td>$10200 LBS AT 120 PSI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KG SINGLE</td>
<td>6300</td>
<td>6640</td>
<td>6960</td>
<td>7280</td>
<td>7620</td>
<td>7940</td>
<td>8240</td>
<td>8500</td>
<td>8860</td>
<td>9250</td>
<td></td>
<td>$4625 KG AT 830 kPa</td>
<td></td>
</tr>
<tr>
<td>455/55R22.5 LRL X One XDA-HT Plus, X One XDN2, X One XTE</td>
<td>LBS SINGLE</td>
<td>15000</td>
<td>15800</td>
<td>16580</td>
<td>17360</td>
<td>18120</td>
<td>18880</td>
<td>19640</td>
<td>20400</td>
<td>21200</td>
<td>22000</td>
<td></td>
<td>$11000 LBS AT 120 PSI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KG SINGLE</td>
<td>6800</td>
<td>7160</td>
<td>7520</td>
<td>7880</td>
<td>8220</td>
<td>8560</td>
<td>8900</td>
<td>9250</td>
<td>9580</td>
<td>10000</td>
<td></td>
<td>$5000 KG AT 830 kPa</td>
<td></td>
</tr>
<tr>
<td>455/55R22.5 LRM X One XZU S, X One XZY3</td>
<td>LBS SINGLE</td>
<td>16580</td>
<td>17360</td>
<td>18120</td>
<td>18880</td>
<td>19640</td>
<td>20400</td>
<td>21200</td>
<td>22000</td>
<td>22600</td>
<td>23400</td>
<td></td>
<td>$11700 LBS AT 130 PSI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KG SINGLE</td>
<td>7520</td>
<td>7880</td>
<td>8220</td>
<td>8560</td>
<td>8900</td>
<td>9250</td>
<td>9580</td>
<td>10000</td>
<td>10240</td>
<td>1060</td>
<td></td>
<td>$5300 KG AT 900 kPa</td>
<td></td>
</tr>
</tbody>
</table>

* With chip and cut resistant tread compound.
In comparative sizes there will be no required change in gear ratios nor any required component changes. Consult your equipment manufacturer for details. Contact Michelin directly for any variation in specification.

COMPARATIVE MICHELIN® X ONE® TIRE SIZES

<table>
<thead>
<tr>
<th>Dual Size</th>
<th>MICHELIN® X One® Tire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>11R22.5 or 275/80R24.5</td>
<td>455/55R22.5</td>
</tr>
<tr>
<td>275/80R22.5</td>
<td>445/50R22.5</td>
</tr>
</tbody>
</table>

WHEELS

The MICHELIN® X One® tire requires the use of 22.5 x 14.00” wheels. Both steel and aluminum wheels are currently available in 0” and 2” outsets. The majority of the wheels currently offered have a 2” outset.

Outset: The lateral distance from the wheel centerline to the mounting surface of the disc. Outset places the rim centerline outboard of the mounting (hub face) surface. Inset places the rim centerline inboard of the mounting (hub face) surface or over the axle. Thus a wheel with a 2” outset has the centerline of the rim base 2” outboard from the hub mounting surface.

Some axle and hub manufacturers have recently clarified and confirmed their position concerning the use of such wheels with their respective components. While the position of the component manufacturers is not totally consistent, the majority’s view concerning the retrofit of duals with MICHELIN® X One® tires can be summarized as follows:

<table>
<thead>
<tr>
<th>Axle Type*</th>
<th>Spindle Type</th>
<th>Wheel Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive axles</td>
<td>"R"</td>
<td>2” outset wheels</td>
</tr>
<tr>
<td>Trailer axles</td>
<td>"P"</td>
<td>2” outset wheels</td>
</tr>
<tr>
<td>Trailer axles</td>
<td>"N"</td>
<td>Check with component manufacturer</td>
</tr>
</tbody>
</table>

* Many other axle and spindle combinations exist. Contact axle manufacturers.

NOTE: Use of outset wheels may change Gross Axle Weight Rating (GAWR). Consult vehicle and component manufacturers.

AXLE TRACK WIDTH

Three standard trailer axle track widths are available. They are 71.5”, 77.5”, and 83.5”. A typical tandem drive axle track width is approximately 72”. Check with the axle manufacturers for other sized options.

Axle width is measured from spindle end to spindle end (the two widest points).

Axle track is a center to center distance between the dual or center of single tire to center of single tire.

71.5” is a standard axle track width found on bulk and liquid tankers.

77.5” is a standard axle track width for 102” wide trailers.

83.5” is the newer wider track axle intended for use with wide singles and 0” outset wheels for increased track width, stability, and payload.

VEHICLE TRACK

With a standard length axle and 2” outset wheels, the resulting variation in track width is an increase of approximately 1.5” per side (3” total) as compared to a dual tire configuration.

End-users that have retrofitted vehicles with 2” outset wheels should contact their respective vehicle, axle, or component manufacturers for specific application approvals or maintenance recommendations.

Measurements are rounded.
MICHELIN® X ONE® TIRE MOUNTING INSTRUCTIONS

The MICHELIN® X One® tire must be mounted on 22.5 x 14.00" size wheels. Both steel and aluminum are available in Hub (Uni Mount) piloted, and currently aluminum is available in Stud (Ball Seat) configuration. Supplemental parts will be required with 'Stud-Piloted' wheels; i.e. front and rear outer cap nuts to replace inner and outer nuts used for mounting traditional stud-piloted dual assembly. Industry-wide part numbers will be 5995L and 5995R. To ensure proper stud length, there should be 4 threads visible from the nut. There are no differences in mount or dismount procedures other than when mounting the MICHELIN® X One® tire onto a vehicle, position the tire so that the tire sits on the outbound side of the wheel similar to where the outer dual would normally be positioned. Additionally, this will offer exceptional lateral clearance. Select a valve stem that can be accessed for air pressure checks and is installed facing outward.

Note: Safety cages, portable and/or permanent, are also available and required for inflation of the MICHELIN® X One® tire assemblies.

MICHELIN® X ONE® TIRE REPAIR AND RETREAD

While the MICHELIN® X One® tire may require some special equipment to handle the wider tread and casing, it does not require any special procedure to be repaired or retreaded. As with any tire, special care should be given to respect the recommendations and guidelines associated with the specific product to ensure optimum performance.

Initial Inspection

Inspect the MICHELIN® X One® casings as defined by your retread process manufacturer or industry recommended practices using appropriate equipment.

When using an electronic liner inspection device, such as the Hawkinson NDT, a new wide base probe of at least 275 mm/10.9 inches is required to ensure sufficient and consistent cable contact with the shoulder/upper sidewall area (Hawkinson part # PROBE ASSEMBLY 009). It is recommended to slow the rotation speed or make several additional cycles to catch as many small punctures as possible.

Shearography

If using laser shearography inspection, adjust and/or modify to ensure complete imaging shoulder to shoulder, per equipment manufacturer. Also make sure the correct vacuum level is applied.

Buffing

An expandable rim width of 14.5 inches is required. The beads of the casing should be lubricated with a fast drying, non-petroleum based tire lubricant. Buffing should not start before casing reaches target pressure in the expandable rim as defined by your retread process manufacturer. Recommended minimum inflation pressure is 1.2 bars or 18 psi. Recommended tread width ranges are given below and may vary depending on the type and condition of the MICHELIN® X One® casing. The MICHELIN® X One® casing's finished, buffed measured width should follow the same standards as other casings: no more than 2 mm less than the tread width and no more than 8 mm more than tread width.

After Buff Inspection

If after buffing, multiple circumferential cracks or splits remain in one or both shoulders of the tire in the vicinity of the outside tread groove (Picture 1), the casing should be rejected. This should not be confused with a 360 degree product interface line that sometimes is visible after buff (Picture 2). If this line is visible, it should be probed; and if found to be loose material, the casing should be rejected. If it is tight, continue the retread process.
Tread Builder

Expandable rim width of 14.5 inches is required. Buffing on a more narrow rim can result in excess undertread remaining in the shoulder, increasing the operating belt edge temperature.

Tread building should not begin until tire pressure has reached the target inflation pressure in the expandable rim as defined by your retread process manufacturer.

For cushion to casing extruded bonding gum application, recommended minimum inflation pressure is 0.8 bar or 12 psi. Bonding gum thickness should not exceed 1.5 mm (2/32”) in the crown and 2.5 mm (3/32”) in the shoulders.

Note: For non-MICHELIN wing tread products, contact MRT Duncan, SC at 1-888-678-5470; then press 3 for Technical Support.

Enveloping

Contact your envelope supplier for the recommended size envelopes to be used.

Curing

Cure the MICHELIN® X One® casing according to cure law for the tread design per the retread process manufacturer.

Final Inspection

Conduct the final inspection of the MICHELIN® X One® casing according to the retread process manufacturer work method and specification.

Note: The retreader is still responsible for determining if the MICHELIN® X One® casing is capable of being retreaded; the same as would be done for any other tire in the inspection process.

Principal Components

![Diagram of tire components]

Note: For truck sizes, Point B is located on the point of the bead, Point A is found 75 mm from Point B towards the interior of the casing, and Point A’ is also 75 mm from Point B but is located on the exterior of the casing.

Damage Guidelines

- **Sidewall Damage**
- **Crown Damage**
- **Bead Damage**
- **Interior Damage**
REPAIR RECOMMENDATIONS*

<table>
<thead>
<tr>
<th>Type of Repair</th>
<th>Application</th>
<th>Quantity Limits</th>
<th>Size Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Repair (no body ply affected)</td>
<td>Long Haul, Pickup & Delivery (P&D)</td>
<td>Max 10 per sidewall</td>
<td>No limit</td>
</tr>
<tr>
<td></td>
<td>Severe Service</td>
<td>Max 20 per sidewall</td>
<td>No limit</td>
</tr>
<tr>
<td>Bead Repairs (rubber damage only)</td>
<td>All</td>
<td>Max 4 per bead</td>
<td>Max width: 150 mm (6 in) Min distance between repairs: 75 mm (3 in)</td>
</tr>
<tr>
<td></td>
<td>Severe Service</td>
<td></td>
<td>L = 2 mm x W = 50 mm (1/16 in x 2 in) Min distance between repairs: 75 mm (3 in)</td>
</tr>
<tr>
<td>Bead Repairs (chafer strip)</td>
<td>All</td>
<td>Max 4 per bead</td>
<td>L = 25 mm x W = 55 mm (1 in x 2 in) Min distance between repairs: 75 mm (3 in)</td>
</tr>
<tr>
<td>Liner Repairs</td>
<td>All</td>
<td>No limit</td>
<td>If blister diameter is less than 5 mm (3/16 in), leave intact; repair between 5 mm (3/16 in) and 20 mm (3/4 in) If blister diameter is more than 20 mm (3/4 in), reject casing</td>
</tr>
<tr>
<td>Buzzouts (protector ply and 3rd working ply)</td>
<td>Long Haul, P&D</td>
<td>Max 15 per tire</td>
<td>Max diameter: 40 mm (1.6 in) Max surface: 1600 mm² (2.5 in²)</td>
</tr>
<tr>
<td></td>
<td>Severe Service</td>
<td>Max 60 per tire</td>
<td>Max diameter: 40 mm (1.6 in) Max surface: 1600 mm² (2.5 in²)</td>
</tr>
<tr>
<td>Buzzouts (2nd working ply; Infinicoil)</td>
<td>Long Haul, P&D</td>
<td>Max 3 per tire</td>
<td>Max diameter: 30 mm (1.2 in) Max surface: 900 mm² (1.4 in²)</td>
</tr>
<tr>
<td></td>
<td>Severe Service</td>
<td>Max 20 per tire</td>
<td>Max diameter: 30 mm (1.2 in) Max surface: 900 mm² (1.4 in²)</td>
</tr>
<tr>
<td>Nail Hole Repairs</td>
<td>All</td>
<td>Max 5 per tire</td>
<td>Max diameter: 10 mm (0.4 in)</td>
</tr>
<tr>
<td>Section Repairs</td>
<td>All</td>
<td>Max 2 per tire</td>
<td>Crown Max diameter: 25 mm (1.0 in) Sidewall L 70 mm x W 25 mm (2.8 in x 1.0 in) L 90 mm x W 20 mm (3.8 in x 0.8 in) L 120 mm x W 15 mm (4.7 in x 0.6 in)</td>
</tr>
</tbody>
</table>

NOTE: Total combined Nail Hole Repairs + Section Repairs = should not exceed 5 total repairs.

RETREAD RECOMMENDATIONS*

<table>
<thead>
<tr>
<th>Casing Size</th>
<th>Buff Radius</th>
<th>Circumference</th>
<th>Tread Type</th>
<th>Tread Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1700 mm (+/- 50 mm) (67 in)</td>
<td>3070 mm (121 in)</td>
<td>Flat Tread</td>
<td>Min 380 mm Max 390 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wing Tread**</td>
<td>Min 375/420 mm Max 385/430 mm</td>
</tr>
<tr>
<td>455/55R22.5</td>
<td>1700 mm (+/- 50 mm) (67 in)</td>
<td>3225 mm (127 in)</td>
<td>Flat Tread</td>
<td>Min 390 mm Max 400 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wing Tread**</td>
<td>Min 385/430 mm Max 395/440 mm</td>
</tr>
</tbody>
</table>

* Disclaimer - Documents subject to change.
** For non-MICHELIN wing tread sizes, contact MRT Technical Support at 1-888-678-5470 Option 3.
Specific chains are available for the MICHELIN® X One® tire product line. Consult Michelin or your chain supplier for proper type/size.

‡ The information provided is for reference only. Chains-specific questions should be directed to the chains manufacturer.

GEAR RATIO
A change in tire dimension will result in a change in engine RPM at a set cruise speed* that will result in a change in speed and fuel economy. The effect of tire size change on gear ratio should be considered in individual operations.

A decrease in tire radius will increase tractive torque and increase indicated top speed. An increase in tire radius will reduce tractive torque and decrease indicated speed.

Tire Revs./Mile – Speed – Size: These factors can affect engine RPM if corresponding changes are not made to engine ratios.

Example: Going from larger diameter tire to smaller diameter tire.
If you currently run a 275/80R22.5 MICHELIN XDN’2 tire (511 Tire Revs./Mile) and change to a 445/50R22.5 MICHELIN X One® XDN’2 tire (515 Tire Revs./Mile), the speedometer will indicate a slightly higher speed than the actual speed the vehicle is traveling.

\[
\text{Final Tire Revs./Mile} = \frac{515 - 511}{511} = 0.0078 \text{ or } .78\% \text{ (< 1% change)}
\]

So when your actual speed is 60 mph, your speedometer will read 60.47 mph.

For additional information about MICHELIN® X One® Tires, refer to the MICHELIN® X One® Truck Tire Service Manual (MWL43101).
FOOTPRINTS:
MICHELIN X One® XDA®
versus
275/80R22.5

FOOTPRINT COMPARISONS TO DUAL TIRE FITMENTS

Unloaded - 8,500 lb/axle

Loaded - 17,000 lb/axle

Unloaded - 8,500 lb/axle

Loaded - 17,000 lb/axle

Unloaded - 8,500 lb/axle

Loaded - 17,000 lb/axle
SECTION FIVE

MICHELIN® RV Tires

GENERAL INFORMATION
ABOUT MICHELIN® RV TIRES 72-73
Service Life for RV/Motorhome Tires
The Importance of Tire Pressure
Air Pressure Requirement
When to Check the RV Tire Air Pressure
Determining the RV’s Correct Weight

HOW TO WEIGH THE
RECREATIONAL VEHICLE 74-77
How to Weigh the RV
Here Are Three Different Types of Scales: Platform,
Segmented Platform, and Single Axle
Weighing the Single Axle Recreational Vehicle
Weighing the Tandem Axle Recreational Vehicle
The Effect of Towed Vehicles or Trailers
How to Use the Actual RV Weight Information
with the Tire Data Load Chart
Using Blocks to Level Motorhomes and
RVs Equipped with Radial Tires

MAINTAINING MICHELIN RV TIRES 78
Aging, Weather Checking, and Ozone Cracking
Long Term Storage and RV Tires
Proper Cleaning of RV Tires
Tire Repair
Tire Inspection

COMMON TIRE DAMAGES 79-80
Underinflation
Fatigue Rupture
Dual Kissing
Tire Wear, Balance, and Wheel Alignment —
Toe Wear, Camber Wear, Tire Rotation

VIBRATION DIAGNOSIS 81
Vibration Complaint
Vibration Diagnosis

SELECTING REPLACEMENT TIRES FOR THE RV 82

For additional information about MICHELIN® RV Tires, refer to the MICHELIN® RV Tires Guide (MWL43146) and MICHELIN® Truck Tire Data Book (MWL40731).
GENERAL INFORMATION ABOUT MICHELIN® RV TIRES

SERVICE LIFE FOR RV/MOTORHOME TIRES

The following recommendation applies to RV/Motorhome tires. Tires are composed of various types of material and rubber compounds, having performance properties essential to the proper functioning of the tire itself. These component properties evolve over time. For each tire, this evolution depends upon many factors such as weather, storage conditions, and conditions of use (load, speed, inflation pressure, maintenance, etc.) to which the tire is subjected throughout its life. This service-related evolution varies widely so that accurately predicting the serviceable life of any specific tire in advance is not possible.

That is why, in addition to regular inspections and inflation pressure maintenance by consumers, it is recommended to have RV/Motorhome tires, including spare tires, inspected regularly by a qualified tire specialist, such as a tire dealer, who will assess the tire’s suitability for continued service. Tires that have been in use for 5 years or more should continue to be inspected by a specialist at least annually.

Consumers are strongly encouraged to be aware not only of their tires’ visual conditions and inflation pressures, but also of any changes in dynamic performances such as increased air loss, noise, or vibration, which could be an indication that the tires need to be removed from service to prevent tire failure. It is impossible to predict when tires should be replaced based on their calendar age alone.

However, the older a tire, the greater the chance that it will need to be replaced due to the service-related evolution or other conditions found upon inspection or detected during use.

While most tires will need replacement before they achieve 10 years, it is recommended that any tires in service 10 years or more from the date of manufacture, including spare tires, be replaced with new tires as a simple precaution even if such tires appear serviceable and even if they have not reached the legal wear limit.

For tires that were on an original equipment vehicle (i.e. acquired by the consumer on a new vehicle), follow the vehicle manufacturer’s tire replacement recommendations when specified (but not to exceed 10 years).

The date when a tire was manufactured is located on the sidewall of each tire. RV owners should locate the Department of Transportation or DOT code on the tire that begins with DOT and ends with the week and year of manufacture. For example, a DOT code ending with “0304” indicates a tire made in the 3rd week (Jan) of 2004.

THE IMPORTANCE OF TIRE PRESSURE

The most important factor in maintaining the life of MICHELIN® RV tires is making sure they are always properly inflated. Incorrect air pressure for the weight of the vehicle is dangerous and could cause things like premature wear, tire damage, or a harsher ride.

An underinflated or overloaded tire will build up more heat that could go beyond the endurance limits of the rubber and radial cords. This could cause sudden tire failure. Underinflation will also cause poor handling, faster and/or irregular tire wear, and can decrease fuel economy.

Overinflation, on the other hand, will reduce the tire’s contact area with the road, which reduces traction, braking ability, and handling. A tire that’s overinflated for the weight it’s carrying is more prone to a harsh ride, uneven tire wear, and impact damage.
AIR PRESSURE REQUIREMENT

The amount of air pressure required in each tire depends on the weight of the fully loaded vehicle. So the RV owners cannot determine the tire’s correct air pressure unless they know their vehicle’s actual weights. The maximum load capacity allowed for the size tire and load rating and the minimum cold air inflation needed to carry that maximum load are located on the tire’s sidewall. The lower the air pressure, the lower the load that the tire can carry. A complete load and inflation table is available at www.michelinrvtires.com; MICHELIN® RV Tires: Guide For Proper Use and Maintenance and RV Tire Information – MWL43146; and the MICHELIN® Truck Tire Data Book – MWL40731.

WHEN TO CHECK RV TIRE AIR PRESSURE

The RV owners need to know the correct air pressure per axle for their RV, and they need to know when and how often to check the MICHELIN® RV tires.

Here are a few recommendations for the RV owners:
1) Check at least once a month and before any major trips.
2) On long trips, check every morning before driving.
3) Check before and after storage.
4) On short trips of a day or less driving each way, check before you leave and before you return home.

Always try to check tires when they’re “cold” and have not been driven for more than one mile. The stated load capacity for a given cold inflation pressure is based on ambient outside temperatures. The pressure in a “hot” tire may be as much as 10-15 psi higher than the “cold” tire pressure. If the RV owners must check the tires when they’re warm, be sure to allow for an increase in pressure, and make sure the pressure of the tires on both sides of the axle are within a couple of pounds of each other.

Never let air out of a hot tire.

To make checking the tire pressure easier and more accurate, Michelin recommends that the RV owners purchase a quality truck tire air gauge with a dual-angled head. This allows the RV owners to check the pressure of the inner and outer dual wheels. And the easier it is to check the pressure, the more that the RV owner will do it. Nothing should restrict the RV owner’s ability to check their tire pressure daily when driving their RV. Be sure to use pressure-sealing valve caps to prevent air from escaping the valve stem. If the valve stem extension hoses are used, make sure they’re good quality stainless steel braid reinforced and are securely anchored to the outer wheel. The joints should be soaped immediately after initial installation to check for air loss. If the RV has wheel covers, consider removing them since the extra time and effort they require could lead the RV owners to avoid checking the tire’s air pressure.

DETERMINING THE RV’S CORRECT WEIGHT

The GVWR (Gross Vehicle Weight Rating) and the GAWR (Gross Axle Weight Rating) stickers on the RV (normally located on the support pillar next to the driver’s seat) will show the chassis manufacturer’s and/or the RV manufacturer’s total vehicle weight ratings and per axle weight ratings.

The GVWR is the maximum total weight rating — this includes passengers, fluids, and cargo. The GAWR is the maximum for a single axle. These ratings can vary based on a number of components, so RVs of the same make and model will vary because of different options and personal loads.

That’s why the RV owners need to weigh their RV in a loaded condition to know its actual weight. Michelin recommends weighing each wheel position of the vehicle. Why? Because when you weigh the entire vehicle at once, it’s possible to be within the GVWR, but overloaded on an axle. And when you weigh one axle at a time, it’s possible for one wheel position to be overloaded even though the GAWR has not been exceeded (we’ve seen as much as a 1200-pound difference between left and right front tires). Weighing each wheel position will give you a clear indication of how the weight of the RV vehicle is distributed, so you can determine the correct tire inflation pressure.

For instructions on how to weigh by wheel position, see next pages 74-76. Once you know total weight and weight on each wheel position, the tire load data chart will show you the correct inflation pressure for each wheel position.
How to Weigh the Recreational Vehicle

NOTE: Michelin recommends using a professional weighing group or organization to perform the weighing of your Motorhome/RV. The Recreational Vehicle Safety Foundation (RVSEF) is an organization partially funded by Michelin that performs weighing and other educational services. They can be contacted at www.rvsafety.com. If you are planning to do your own weighing, you should follow the procedures below:

How to Weigh the RV

First, the RV must be weighed fully loaded — that includes passengers, food, clothing, fuel, water, propane, supplies, and anything else you can think of. Also, any towed vehicle (car, boat, or trailer) or item loaded on brackets on the back of the RV (like bikes or motorcycles) should be included in the weighing.

Here Are Three Different Types of Scales:

1) **Platform** — Platform scales are usually long enough to weigh the entire vehicle at once. Michelin suggests the following:
 a) Pull onto the scale so that only the front axle is on the platform. The rear end of the scale needs to be midway between the front and rear axles. Record the weight.
 b) Pull forward until the full unit is on the scale. Record the weight.
 c) Pull forward until only the rear axle is on the platform. The front end of the scale needs to be midway between the front and rear axles. Record the weight.
 d) If RV has a rear tag axle, pull forward so only tag axle is on the scale. Record the weight.
 e) To determine individual wheel position weights, repeat steps (a) through (d) with only one side of the vehicle actually on the scale and the vehicle centered over the side of the scale. See diagram on next page. Record the weights.
 f) To calculate the opposite wheel positions’ weights, subtract the weights recorded in step (e) from the weights recorded in steps (a) through (d). If there is not a towed vehicle, the tag axle weight derived from (d) will represent the actual weight on the tag axle.
 g) If a vehicle is being towed, it should be weighed and combined with the GVW (Gross Vehicle Weight) to ensure the total weight doesn’t exceed the GCWR (Gross Combined Weight Rating).

2) **Segmented Platform** — Platform scales with segmented sections can provide individual axle weights and total vehicle weights all at once when the vehicle is positioned properly. To do this, simply:
 a) Position the vehicle on the scales so that each axle is centered as much as possible on the segments, and record the weight.
 b) Reposition the vehicle so that only one side is on the scale – centered on the segment as much as possible.
 c) Subtract the weighed wheel positions from the total axle weights to determine the unweighed wheel position weights.

3) **Single Axle** — Weighs one axle at a time. Follow these steps:
 a) Drive the front axle onto the scale and stop long enough for the weight to be recorded.
 b) Pull vehicle forward until the rear axle is on the scale.
 c) For gross vehicle weight, add the two axle weights together.
 d) To obtain the individual wheel position weights, repeat this process with only one side of the RV on the scale.

Note: Even though the weight of the total axle is within the axle rating, it may be overloaded on one side, which means an overloaded wheel position. That’s why side-to-side weighing is required.
The RV must remain as level as possible on the scale (even when an axle or side isn’t on the scale). Therefore, to obtain side-to-side weights, there must be enough space on either side of the scale to accommodate the RV being partially off the scale.

If there is a difference in the weights on one side of the vehicle as compared to the other, it is important to redistribute the load more evenly to avoid component failure and improve handling. These weights make it possible to compare against the GAWR (Gross Axle Weight Rating), GVWR (Gross Vehicle Weight Rating), and tire capacities. They also help determine proper tire pressure.

WEIGHING THE SINGLE AXLE RECREATIONAL VEHICLE

TO OBTAIN INDIVIDUAL AXLE AND GROSS VEHICLE WEIGHTS

STEP 1a

![Image of single axle](image)

Scale Weight

lb.

(Step 1a = Gross Axle Weight)

From Owner’s Manual

lb.

Gross Axle Weight Rating

STEP 1b

![Image of single axle](image)

lb.

(Step 1b = Gross Vehicle Weight)

STEP 1c

![Image of single axle](image)

lb.

(Step 1c = Gross Axle Weight)

STEP 1d

![Image of single axle](image)

lb.

Vehicle Weight

(Step 1d = Gross Combined Weight Rating – Gross Vehicle Weight)

TO OBTAIN INDIVIDUAL WHEEL POSITION WEIGHS

STEP 2a

![Image of single axle](image)

lb.

(Step 2a)

One Side Scale Weight

lb.

(Step 1a-2a)

Calculate Other Side Weight

lb.

(Step 1b-2b)

Tire Load (lbs.)

lb.

(See Note #1)

Inflation

psi

(See Note #1)

STEP 2b

![Image of single axle](image)

lb.

(Step 2b)

lb.

(See Notes #1 & #2)

STEP 2c

![Image of single axle](image)

lb.

(Step 2c)

lb.

(See Note #1)

1. From the tire manufacturer’s load and inflation tables or the sidewall of the tires mounted on the vehicle.
2. If vehicle has duals, read dual capacity from tire and multiply by 2 to obtain dual assembly load capacity.
WEIGHING THE TANDEM AXLE RECREATIONAL VEHICLE

TO OBTAIN INDIVIDUAL AXLE AND GROSS VEHICLE WEIGHTS

STEP 1a

<table>
<thead>
<tr>
<th>Scale Weight</th>
<th>lbs.</th>
<th>(Step 1a = Gross Axle Weight)</th>
</tr>
</thead>
</table>

STEP 1b

| lbs. | (Step 1b = Gross Vehicle Weight) |

STEP 1c

| lbs. | (Step 1c = Gross Axle Weight) |

STEP 1d

| lbs. | Drive Axle Weight = (1c-1d) |

STEP 1e

| lbs. | Gross Axle Weight Rating |

| lbs. | Gross Vehicle Weight Rating |

TO OBTAIN INDIVIDUAL WHEEL POSITION WEIGHTS

STEP 2a

| lbs. | (Step 2a) |

STEP 2b

| lbs. | (Step 2b) |

STEP 2c

| lbs. | (Step 2c) |

STEP 2d

| lbs. | Step 2d: Right Duals = (2b-2c) |

| lbs. | Left Duals = (2d) |

1. From the tire manufacturer's load and inflation tables or the sidewall of the tires mounted on the vehicle.
2. If vehicle has duals, read dual capacity from tire and multiply by 2 to obtain dual assembly load capacity.

THE EFFECT OF TOWED VEHICLES OR TRAILERS

If your RV is towing a vehicle, you need to know the RV's GCWR (Gross Combined Weight Rating), the total actual loaded weight of the RV, plus the total actual loaded weight of the towed vehicle. Even though the GCWR has more to do with the design limits of the drivetrain (engine, transmission, axle, brakes, and bearings), the additional weight can also affect the tires and the RV's handling. Also, always remember to consider the tongue weight of the trailer and its effect on handling.
When using blocks to level motorhomes or RVs, extreme caution must be taken to make sure the tires are fully supported. The weight on the tire should be evenly distributed on the block. And in the case of duals, it should be evenly distributed on blocks for both tires. If not, the sidewall cables can become fatigued and damaged, resulting in a sidewall rupture and a complete, sudden loss of air pressure.

Therefore, we must “overinflate” the right front tire and the left rear duals. Checking the load/inflation table below shows that a cold tire pressure of 95 psi will support 5,510 lbs. on a single front tire.

To determine the air pressure for the rear duals, again take the heaviest position, in this instance the right rear weighs 9,200 lbs. The load/inflation table below shows that a cold pressure of 85 psi will support 9,380 lbs. on 2 dual tires. It is important to note that the cold inflation pressure for the tire must never exceed the maximum inflation rating that is stamped on the wheel.

REMINDERS: For control of the RV, it is critical that the tire pressures are the same on both sides of an axle. Please note that the standard MICHELIN load/inflation charts have been altered for RV usage only.

This chart is for RV wheel end use only.

275/80R22.5 LRG

<table>
<thead>
<tr>
<th>PSI</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
<th>100</th>
<th>105</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>kPa</td>
<td>480</td>
<td>520</td>
<td>550</td>
<td>590</td>
<td>620</td>
<td>660</td>
<td>690</td>
<td>720</td>
<td>760</td>
</tr>
<tr>
<td>LBS</td>
<td>SINGLE 4500</td>
<td>4725</td>
<td>4940</td>
<td>5155</td>
<td>5370</td>
<td>5510</td>
<td>5780</td>
<td>5980</td>
<td>6175</td>
</tr>
<tr>
<td>DUAL 8190</td>
<td>8600</td>
<td>9080</td>
<td>9380</td>
<td>9770</td>
<td>10140</td>
<td>10520</td>
<td>10880</td>
<td>11350</td>
<td></td>
</tr>
<tr>
<td>KG SINGLE 2040</td>
<td>2140</td>
<td>2240</td>
<td>2340</td>
<td>2440</td>
<td>2500</td>
<td>2620</td>
<td>2710</td>
<td>2800</td>
<td></td>
</tr>
<tr>
<td>DUAL 3720</td>
<td>3900</td>
<td>4120</td>
<td>4260</td>
<td>4440</td>
<td>4600</td>
<td>4780</td>
<td>4940</td>
<td>5150</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM LOAD AND PRESSURE ON SIDEWALL</td>
<td>S = 1 tire on 1 side of single axle</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = 2 tires on 1 side of dual axle</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| For Tag axle, use applicable Single or Dual chart

USING BLOCKS TO LEVEL MOTORHOMES AND RVS EQUIPPED WITH RADIAL TIRES

When using blocks to level motorhomes or RVs, extreme caution must be taken to make sure the tires are fully supported. The weight on the tire should be evenly distributed on the block. And in the case of duals, it should be evenly distributed on blocks for both tires. If not, the sidewall cables can become fatigued and damaged, resulting in a sidewall rupture and a complete, sudden loss of air pressure.

Note in the correct method, the blocks are wider than the tread and longer than the tire’s footprint. This provides maximum support to the tires and assures that the load is evenly distributed.
AGING, WEATHER CHECKING, AND OZONE CRACKING

During the pre-trip inspection, be sure to check the tires for signs of aging, weather checking, and/or ozone cracking — these show up as tiny cracks in the rubber surface on the sidewall of the tire. If the cracks are less than 1/32” deep, the tire is fine to run. Between 1/32” and 2/32”, the tire is suspect and should be examined by the MICHELIN dealer. If the cracks are any deeper than 2/32”, the tire should be replaced immediately.

Here are a few tips to help you protect the tires from these common damage conditions:
1) Keep the tires properly inflated.
2) Keep the tires clean.
3) Avoid prolonged exposure to heat, cold, or moisture.
4) Avoid prolonged exposure to ultraviolet rays.
5) Cover the tires when the vehicle is not in use.
6) Do not park near electric generators or transformers.
7) Do not store vehicle in an area where welding is being done or in a garage that has mercury vapor lamps.

LONG TERM STORAGE AND RV TIRES

Unless the RV owner is a full-time RV-er, the vehicle probably spends some time in long-term storage. But what the RV owner probably didn’t know is that rubber tires age when not being used. So, if the owner must store the RV, a cool, dry, sealed garage is the best bet. Also, some storage surfaces can cause tires to age faster. That’s why Michelin recommends placing a barrier (cardboard, plastic or plywood) between the tire and the storage surface.

Here are some other steps the RV owner can take to help reduce the aging effects from long-term storage:
1) Thoroughly clean tires with soap and water before placing into storage.
2) Cover tires to block direct sunlight and ultraviolet rays.
3) Store out of a high ozone area.

Note: When a vehicle is stored, tires should be inflated to the inflation pressure indicated on the sidewall.

Before removing the vehicle from long-term storage, thoroughly inspect each tire — this includes sidewalls, tread area, and air pressure. If the tires have lost air, be sure to inflate them to the correct pressure before driving.

PROPER CLEANING OF RV TIRES

Like the rest of the RV, it pays to keep the MICHELIN® tires clean. Road oil will cause deterioration of the rubber, and dirt buildup will hold the contaminants next to the tire.

As with the cleaning of any rubber product, proper cleaning methods must be used to obtain the maximum years of service from the tires. A soft brush and the normal mild soap that you would use to clean the RV may be used. If you use a dressing product to “protect” the tires from aging, use extra care and caution. Tire dressings that contain petroleum products, alcohol, or silicones will cause deterioration or cracking and accelerate the aging process.

In many cases, it is not the dressing itself that can be a problem, but rather the chemical reaction that the product can have with the antioxidant in the tire. Heat can add to the negative reaction. When these same dressing products are used on a passenger car tire that is replaced every three to four years, it is rare to see a major problem. However, in most cases, RV tires may last much longer due to limited annual mileage, and the chemical reactions have much longer to take place.

TIRE REPAIR

Even the best drivers can drive over a nail, and the best tires can pick up that nail or screw and go flat. If you pick up an object that causes a flat with a MICHELIN® RV tire, the repair must be made to the inside of the tire to be repaired properly. To do this, the tire needs to be demounted and inspected on the inside of the casing for any other damage that the object may have caused. See the MICHELIN truck tire dealer for the proper repair and damage inspection.

TIRE INSPECTION

The MICHELIN® RV tires should be inspected thoroughly at least once a year, and any time the owner drives in rough or rocky terrain, or when the owner is having their RV serviced. This inspection should include both sidewalls, the tread area, and the valves, caps, and any valve extensions. Inspect for nails, cuts, bulges, aging, or fatigue cracks and weathering or ozone cracking. Also, check between the duals for objects lodged between them. See the MICHELIN dealer at once if anything unusual is observed.

On a regular basis, rub the palm of your hand across the face of the tread on your front tires to feel for any feathered wear from “toe” alignment problems. NOTE: Be careful since severe wear can expose steel belt edges that are very sharp. A “toe” misalignment problem can be caused by impact with a “chuck” hole in the road. Bad “toe” wear can be hard to find visually, but can be felt very quickly with the hand. This type of alignment problem can wear rubber off the tread of the tires in just a few hundred miles.
No tire, regardless of its quality, is indestructible. Certain conditions of use and abuse can stress a tire beyond reasonable operating limits, causing it to come out of service even when considerable tread remains. Such conditions are clearly indicated by the damage they leave on the tire itself. Listed below are some common damages and the signs they leave behind. Please understand that this list is by no means exhaustive and is intended only as a general guide.

UNDERINFLATION

This condition is often referred to as a “run-flat” tire. It is caused by operating a tire at very low or zero air pressure. When a tire is run at normal highway speeds, underinflated, it flexes too much and builds up heat. This heat damages the inner liner, casing, and outer sidewall of the tire. If not remedied quickly, the tire will be irreparably damaged.

In extreme cases, the sidewall of the tire is destroyed, from the excessive heat and the weight of the vehicle crushing/cutting the tire against the wheel as it rolls on the uninflated sidewall. According to guidelines put out by the Rubber Manufacturers Association (RMA), any tire that has been run at less than 80% of recommended air pressure for the load it is carrying should be inspected for possible damage.

When one tire in a dual configuration comes out of service due to under-inflation/run-flat damage, the other tire in the dual configuration should be inspected immediately. If the unserviceable tire was underinflated, that means the serviceable tire was carrying more and more of the load for that wheel position. Consequently, it too may have suffered some casing damage.

FATIGUE RUPTURE

This type of damage is sometimes called a “zipper rip” because of the zipper-like effect it creates in the steel casing cords of the damaged tire. When a casing cord is damaged or repeatedly and excessively bent due to overload and/or underinflation, it will eventually break and subject the cords on either side to even more stress. When enough strength has been lost due to additional cord breakage, a rupture occurs and can progress rapidly along the path of least resistance in the upper sidewall. This can happen hours, days, or even months after the initial damage event when all evidence or memory of the initial damage or overload/underinflation is gone.

Casing cords in the MICHELIN® truck tires used on motorhomes are very strong twisted steel cables. Extreme over-deflection of a tire, that can occur during improper blocking of tires or high energy impacts, may weaken the structure of the cable so as to make it less tolerant of the repeated bending stress encountered in normal use. If in addition, the integrity of the steel cords is degraded by corrosion from moisture reaching the cords through cuts or tears in the rubber, their tolerance of these conditions will be even further reduced. This corrosion may result from mounting damage, foreign objects left inside the tire, road hazards, tire mishandling, or even improper repair of a nail hole.

DUAL KISSING

While somewhat romantic in name only, this type of damage refers to what happens when two tires in dual configuration make contact with each other while in operation. The heat generated by the friction between the two tires severely weakens the casing material of the dual tires. This is easily seen on the sidewalls of the tires where the duals came in contact. The condition may be caused by several factors:

- improper mounting
- incorrect wheel width or offset
- underinflation
- “casing growth”

In this last case, the fabric casing cords of the tire actually stretch and expand, causing the tire to touch or kiss, under load at the contact patch.
TIRE WEAR, BALANCE, AND WHEEL ALIGNMENT

All tires mounted on RVs should wear in a smooth, even wear pattern when the tires are maintained with the correct air pressure for the load on the tire. If tires begin to show an irregular wear pattern, and the vehicle alignment is correct, sometimes just rotating the tires to change direction of rotation and wheel position will allow the tires to wear evenly.

Significant tire/wheel assembly imbalance may cause steering difficulties, a bumpy ride, and worn spots on your tires. It is recommended that tire/wheel assemblies be inspected and balanced if one of these conditions exists.

Check with the motorhome chassis manufacturer for the correct alignment specifications. Michelin recommends, for optimized radial tire life and performance, that the “toe-in” setting should be as close as is practical to zero, within the motorhome manufacturer's specifications. The caster should be set to the maximum positive or minimum negative setting within the tolerances specified by the manufacturer.

Toe Wear

A feathered wear pattern on the front tires typically indicates misalignment (toe-in or toe-out). Sometimes a radial tire will not have this wear pattern unless the toe condition is severe. Instead of the feathered edge wear, the tire will be worn on the inside or outside shoulder, which could be confused with camber wear.

On a three-axle RV, a skewed rear axle and tag could cause feathered edge wear on one shoulder of one front tire and feathered edge on the opposite shoulder of the other front tire. In order to correctly diagnose a tire wear condition, the motorhome should have the alignment checked on all wheel positions.

Camber Wear

Also known as edge wear, camber wear shows up on the inside or outside shoulders of the tread. Wear on the inside edge of both tires may be due to negative camber or toe-out, a misalignment. If only one tire shows edge wear, check for worn kingpin bushings, bent or worn steering components, or excessive positive camber. For solid beam axles, excessive camber can result from axle over-load.

Tire Rotation

If correct air pressure and proper alignment are both continually maintained, tire rotation may never be needed. However, in other cases, tire rotation may be needed to help even out wear patterns caused by alignment, underinflation, or free-rolling wear problems. Follow the motorhome manufacturer’s rotation service recommendations. There are no restrictions as to the method of rotation with the MICHELIN® RV tires; however, Michelin recommends including the spare tire in the rotation pattern and changing the direction of rotation. Tires can be rotated front to rear and side to side.
VIBRATION DIAGNOSIS

VIBRATION COMPLAINT
When a motorhome owner comes in with a vibration complaint, contact the appropriate chassis manufacturer to establish an incident report and get possible motorhome warranty handling instructions. The following procedure should take care of most complaints.

1. Driver interview — this should include the following:
 - has this vehicle been worked on by the chassis manufacturer or MICHELIN dealer for this complaint?
 - type of complaint
 - driving and road conditions when the vibration occurs - mph/rpm acceleration/deceleration
 - when in the life of the vehicle did it begin?
 - where does the vibration seem to be coming from? Front or rear?
 - recent maintenance or modifications to the vehicle

2. Vehicle test drive - ride in the vehicle and have the owner demonstrate the complaint to you to verify that there is in fact a problem.
 Include the following observations:
 - speed at onset of vibration and the speed range
 - does the vibration phase in and out, or is it constant?
 - sensitivity to road surface? Smooth roads? Rough roads? Both?
 - effects of acceleration/deceleration/constant speed
 - is vibration felt through the seat? Floor? Steering wheel? Other?
 - is this a ride quality or a drive train vibration complaint?

3. Complaint history
 - check all motorhome warranty records, etc., to determine past history of the same or similar complaints on this vehicle
 - have there been any changes or modifications to the chassis since manufacturing?
 - has any prior effort been made to diagnose or correct the complaint? By whom?

VIBRATION DIAGNOSIS
If the vibration seems to be driveline related and from the wheel ends, then perform the following:

Tire/wheel assembly inspection
1. Jack up the front of the vehicle and spin each assembly, observing the wear conditions of each tire and concentricity of the tire on wheel mounting.
 If the variation in the distance between the line-up ("gg") ring and the wheel flange exceeds 1/16", have the assembly broken down, relubed, and remounted (see diagram).

2. Measure and record the radial runout on the vehicle of each assembly with tire runout gauge. Mark the highest point of the assembly. Rotate each assembly until the high spot is at the 12:00 position (without allowing the assembly to turn). Loosen all lug nuts and re-torque in the proper sequence. Re-measure and record the radial runout of the assembly.
 If either front assembly still exceeds 0.040", measure the rear assemblies and put the two assemblies with the least runout on the steer axle.

3. Repeat the vehicle test drive. If the vibration still exists, contact the appropriate chassis manufacturer.
SELECTING REPLACEMENT TIRES FOR THE RV

One of the most important RV equipment purchases that the RV owner will make will be the replacement tires. If they obtained good service with their first set of tires, chances are that they were matched well for the RV’s weight needs and the RV owner type and area of driving.

Should the RV owner choose to replace their tires with another size, be very careful with this selection. There are some basic areas of concern, such as the load rating of the new tire and the overall diameter of the new tire for vehicle clearance, speedometer reading, and wheel width.

There is also the matching of the tires to the dual wheel offset for the dual spacing clearance and the load rating of the wheel. For example: buying a tire with a higher load rating that might require 105 psi would be inappropriate if the RV wheel is limited to 80 psi. (Be sure that the wheel width is compatible with the new tire size; doing otherwise is dangerous.) Consult the vehicle manufacturer for wheel specifications.

If the RV owners have already been driving on MICHELIN® RV tires, they are aware of some of Michelin’s extra benefits, such as the great wet and dry traction and outstanding handling. Most RV owners who drive on MICHELIN® tires for the first time comment on the smooth, quiet ride.

For more information on MICHELIN® RV tires:
– www.michelinrvtires.com
– MICHELIN® RV Tires: Guide For Proper Use and Maintenance and RV Tire Information – MWL43146
– MICHELIN® Truck Tire Data Book – MWL40731
SECTION SIX
Repairs and Retread

REPAIRS ... 84-88
 Two-Piece Radial Truck Nail Hole Repair
 Method Instructions
 MICHELIN® X One® Tires Nail Hole Repair Method Instructions
 Blue Identification Triangle

RETREAD ... 88
Please follow the exact step-by-step procedures contained in this manual to attain a safe and quality repair. Only qualified and trained personnel should do tire repairs. The goal is to return the repaired tire to service and provide the customer with a sound and safe product. Repair products and materials used should be from the same manufacturer to ensure compatibility in the curing process.

Warning!
Always demount the tire from the wheel and complete a thorough tire and wheel inspection prior to returning the components to service.

Check the tire for signs of underinflation/run flat and other damages such as bulges, bead damage, bad repairs, anything that would require the tire to be inspected by a professional retread and repair facility.

Never inflate a tire that has signs of heat damage or with indications of running underinflated.

Remember, if there are any concerns or questions regarding the safety and integrity of the tire, err on the side of caution, and forward the tire to a professional retread and repair facility.

Always follow correct procedures when demounting and mounting tires and wheels.

When inflating an assembly after a repair, be sure to follow all procedures outlined by the tire and wheel industry.

Inspect sidewall area for any signs of ‘zipper’ damage, such as bulges, and listen for popping sounds. If any of these are present, deflate the tire immediately by disconnecting the air line at the quick connect, deflate completely, then remove from the cage/restraining device, and scrap the tire.

Safety First
Use safety glasses, and keep repair area, tools, and materials clean and in good working order.

Always place the mounted tire in a safety cage or an OSHA*-approved restraining device with the valve core still removed!

* Occupational Safety and Health Administration

Nail Hole Limitations Chart

Maximum repairable nail hole diameter is 3/8 inch (T-T area).

All injuries larger than 3/8 inch or outside the specified T-T area, must be treated as a section repair.
1. Locate and mark the injury on the outside and inside of the tire.

2. REMOVE the object from the tire. Inspect the injury to determine the location, size, and angle of penetration. Probe into the injury and make sure that no air infiltration exists or excessive rust has formed. Refer to the Nail Hole Limitations Chart on Page 84 to determine repairability and to select the proper repair material. Use Injury Sizing Tool if available. Make sure to measure the injury to assure the damage does not exceed 3/8” (10 mm).

3. Apply rubber cleaner to the inner liner at the injured area. While the area is still moist, use a rubber scraper to remove contaminating substances.

4. Prepare the injury with the proper size carbide cutter on a low rpm drill (max. 1200 rpm). Following the direction of the injury, drill from the inside out. Repeat this process three times. Repeat this procedure from the outside of the tire to ensure damaged steel and rubber are removed (be careful when drilling; you do not want to make the injury any larger than necessary).

5. Using a Spiral Cement Tool, cement the injury from the inside of the tire with Chemical Vulcanizing Fluid. Turn the tool in a clockwise direction both into and out of the tire. This step should be repeated 3 to 5 times. Leave the tool in the injury as you go to the next step.

6. Place the wire puller in the middle of the black exposed portion of the stem. Remove the protective poly from the stem and brush a light coat of Chemical Vulcanizing Fluid (cement) on this area. For lubrication, apply a coat of cement to the wire puller where it contacts the stem.
Remove spiral cement tool from the injury and feed the small end of the wire puller through the injury from inside of the tire.

Grasp the wire puller from the outside of the tire and begin pulling the stem into place. If the wire puller comes off, grasp the stem with a pair of pliers and pull the stem until it fills the injury, exposing approximately 1/2 inch (13 mm) of the gray cushion bonding gum above the face of the tread.

On the inside of the tire, center the appropriate repair unit template over the stem, make sure to correctly align the template in relationship to the tire beads, and draw a perimeter around the template.

Remove the template and cut off the stem 1/8 inch (3 mm) above the inner liner on the inside of the tire. **NOTE:** If you do not have a repair template, go to this step and cut the stem; then using correct size patch and centering it correctly on the injury – arrows towards the beads – draw your perimeter approximately 1/2 inch larger than the repair patch.

Use a low rpm (max. 5000 rpm) buffer and texturizing wheel to mechanically buff the stem flush to the inner liner. Then buff the outlined area to achieve an even RMA-1 or RMA-2 buffed texture. Use a clean, soft wire brush, remove all dust and debris from the buffed area.

Vacuum all buffing dust and debris from the tire. If the buffed surface is touched or contaminated after cleaning the area, you must repeat Step 11 to guarantee your surface is clean for proper repair bonding.
Using Chemical Vulcanizing Fluid (cement), brush a thin, even coat into the clean textured area. Allow 3 to 5 minutes to dry; the vulcanizing cement should be tacky. Areas with high humidity may require a longer dry time. Make sure the cement used is compatible with the repair units you are installing.

With the tire beads in a relaxed position, center the repair unit over the filled injury. Press the repair unit down into place over the injury. Make sure the directional bead arrows on the repair unit are aligned with the beads of the tire, and press into place. Roll the protective poly back to the outer edges of the repair unit. This enables you to handle the repair unit without contaminating the bonding gum layer. You are now ready to stitch the repair.

Stitch the repair unit, firmly pressing down from the center toward the outer edges. This will eliminate trapping air under the repair unit.

Remove the rest of the poly backing. Stitch the repair unit from the center to the outer edges. Remove the top clear protective poly.

To cover over-buffed areas in tubeless tires, apply Security Sealer to the outer edge of the repair unit and over-buffed area. If tube-type, cover the repair with Tire Talc to prevent the repair from vulcanizing to the tube.

Cut the stem off on the outside of the tire 1/8 inch (3 mm) above the tire’s surface. The tire is now ready to be returned to service.
MICHELIN® X ONE® TIRES NAIL HOLE REPAIR METHOD INSTRUCTIONS

Refer to MICHELIN® X One® Tire Retread and Repair on Pages 66-68 for recommendations on repair guidelines.

MICHELIN® X One® Tire

- MICHELIN® X One® tires: There are no special repair techniques or materials required when repairing a MICHELIN® X One® tire.
- For further information refer to: MICHELIN® X One® Truck Tire Service Manual (MWL43101).

Contact your local MICHELIN Representative or MRT Dealer if damage is beyond nail hole limits and requires a section repair.

BLUE IDENTIFICATION TRIANGLE

Tech Identification Triangles (IDTs): Tech International has designed a blue identification triangle for placement adjacent to a sidewall repair for easier identification of acceptable bulges related to such a repair and not related to tire separation. Bulges 3/8” or less beyond the normal sidewall profile that are associated with sidewall repairs of radial truck tires are permitted by the Rubber Manufacturers Association (RMA) and have been deemed acceptable by the Commercial Vehicle Safety Alliance (CVSA). The Tech IDT is a triangular blue equilateral patch measuring 1.25” per side that is located and vulcanized just above the tire rim’s flange area and near the repair.

Acceptable Bulges 3/8” or Less

Blue Identification Triangle

RETREAD

Since MICHELIN® radial tires are manufactured to very precise tolerances, it is necessary for similar standards of accuracy to be maintained during the retreading process. Suitably designed modern equipment for radial tires must be provided in the retread shop. The proper tread designs, tread width, tread compound, and tread depths, must be selected according to the type of tire and its anticipated service.

The tire must be processed with precision to maintain the design characteristics of the MICHELIN® radial. As there is very little margin for error when retreading radial tires, perfection should be the only standard acceptable.

Refer to MICHELIN® X One® Truck Tire Service Manual (MWL43101) and/or the MICHELIN® Truck Tire Data Book (MWL40731) for recommendations on retread guidelines.

The Buffing Specification Charts in the MRT (1) Retread Quick Reference Tread Guide (MYL41642) and/or the MICHELIN® Truck Tire Data Book (MWL40731) should be used as a general guide for the selection of product and specifications that could optimally be used for a particular casing sculpture and size.

MICHELIN Retread Technologies (MRT) Retread Designs are also available in MRT (2) Retread Quick Reference Tread Guide (MYL41642) and/or the MICHELIN® Truck Tire Data Book (MWL40731).

For more information, contact your local MICHELIN Representative or MRT Dealer.

(1) Documents subject to change.
(2) MRT - MICHELIN Retread Technologies
SECTION SEVEN
Diagonal (Bias or Cross) Ply and Tube-Type

THE DIAGONAL (BIAS OR CROSS) PLY 90-92
Definitions
Tube-Type Tire
Truck Tire Size Markings
Repair and Retread
Static and Low Speed Load and Pressure Coefficients
TRA (The Tire and Rim Association, Inc.) Standards

GENERAL INSTRUCTIONS FOR TUBE-TYPE TIRE DEMOUNTING/MOUNTING. 93-95
Selection of Proper Components and Materials
Tire and Rim Lubrication
Preparation of Wheels, Rims, and Tires

DEMOUNTING TUBE-TYPE TIRES 96-97

MOUNTING TUBE-TYPE TIRES 98-100
Mounting Tube-Type Tires Using Manual Spreaders
Mounting Tube-Type Tires Using Automatic Spreaders
Inflation of Tube-Type Tires
THE DIAGONAL (BIAS OR CROSS) PLY TIRE

DEFINITIONS
Diagonal (bias or cross) ply (or conventional) tires are made up of a number of textile cords set on a bias (laid diagonally), criss-crossing one another. Depending on the textile strength of the cord used (rayon, nylon, polyester, and the required size of the tire, there could be from 6 to 20 plies in a bias-ply carcass. Without steel belts to stabilize the tread, the sidewall and tread work as one unit resulting in distortion with deflection during each revolution. This abrasive force creates scrub and generates heat, prematurely aging the components and shortening the life of the tire.

The number of cross plies in a tire tends to stiffen its walls, preventing sufficient flex under heavy load. This causes lateral tread movement that impairs road grip and causes tread abrasion. The heat generated also stretches the textile cords during the carcass life, allowing the casing to grow and making it difficult to match new, used, and retreaded tires in dual configuration.

Aspect Ratio example: 10.00-20 (dash (-) designates the diagonal (bias or cross) construction), aspect ratio = 100. Section height is the same as section width.

TUBE-TYPE TIRE

Tube Code: The proper MICHELIN® tube to be used with MICHELIN® tube-type tires is designated by the nominal rim diameter followed by a code. Example: Tube for 10.00R20 Michelin® is 20N (the R designates radial construction).

MICHELIN® tubes are made of butyl rubber and marked with the trade name “AIRSTOP®”. Because of the extreme flexibility of the MICHELIN® tire, it is recommended to use an “AIRSTOP” tube. These tubes are made with an overlap splice that is stronger than the butt splice used in many other tubes. Some MICHELIN® tube-type tires may be run with or without a tube. Contact Michelin® to determine tires that apply. Ensure tire is mounted on a sealed wheel if mounted tubeless.

Flap Code: When a flap is required, the proper size to use with MICHELIN tires on each particular rim is designated by a code, the last two digits of which are the rim diameter or rim width. Unless otherwise specified, the flap for the preferred rim is normally supplied with the tire. (e.g. 200-20L or 20 x 7.50)
TRUCK TIRE SIZE MARKINGS

Most truck tire sizes are indicated by the section width in inches, followed by R for radial (dash (-) designates the diagonal (bias or cross) construction), followed by the rim or wheel diameter in inches:

<table>
<thead>
<tr>
<th>TUBE-TYPE</th>
<th>TUBELESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00R20</td>
<td>11R22.5</td>
</tr>
</tbody>
</table>

- 10.00 = nominal section width in inches
- R = radial
- 20 = rim or wheel diameter in inches

Note: A “rule-of-thumb” formula for finding equivalent tubeless sizes from tube-type: Take the nominal section width and remove all figures after the decimal point. Round up to next whole nominal section number and add 2.5 to rim diameter.

Example:

<table>
<thead>
<tr>
<th>TUBE-TYPE</th>
<th>TUBELESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.25R20</td>
<td>9R22.5</td>
</tr>
</tbody>
</table>

Nominal Cross Section: 8.25
Remove: .25
Add: 1 to the 8 = 9
Rim Diameter: 20
Add 2.5 to Rim Diameter: 20 + 2.5 = 22.5

Thus we have 9R22.5 Tubeless.

COMPARATIVE SIZES – STANDARD – LOW PROFILE

<table>
<thead>
<tr>
<th>TUBE-TYPE</th>
<th>TUBELESS TYPE</th>
<th>MICHELIN*</th>
<th>TRA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.25R15</td>
<td>9R17.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.25R20</td>
<td>9R22.5</td>
<td>235/80R22.5</td>
<td>245/75R22.5</td>
</tr>
<tr>
<td>9.00R20</td>
<td>10R22.5</td>
<td>255/80R22.5</td>
<td>265/75R22.5</td>
</tr>
<tr>
<td>10.00R20</td>
<td>11R22.5</td>
<td>275/80R22.5</td>
<td>295/75R22.5</td>
</tr>
<tr>
<td>11.00R20</td>
<td>12R22.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00R22</td>
<td>11R24.5</td>
<td>275/80R24.5</td>
<td>285/75R24.5</td>
</tr>
<tr>
<td>11.00R22</td>
<td>12R24.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The Tire and Rim Association, Inc.

REPAIR AND RETREAD

1. Follow proper procedures per your Michelin Retread Technologies dealer.
2. Use bias repair units in bias tires and radial repair units in radial tires.
3. When performing tube repairs, do not install the patch on an inflated tube, and apply a tire talc to the patch and buffed area to prevent sticking to the inside of the tire.
Section Seven: Diagonal (Bias or Cross) Ply and Tube-Type

A. METRIC AND WIDE BASE DIAGONAL (BIAS) PLY TIRES

The service load and minimum (cold) inflation must comply with the following limitations unless a speed restriction is indicated on the tire.*

<table>
<thead>
<tr>
<th>Speed Range (mph)</th>
<th>% Load Change</th>
<th>Inflation Pressure Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 thru 75 (1)</td>
<td>-12%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>66 thru 70 (1)</td>
<td>-4%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>51 thru 65</td>
<td>None</td>
<td>No increase</td>
</tr>
<tr>
<td>41 thru 50</td>
<td>+7%</td>
<td>No increase</td>
</tr>
<tr>
<td>31 thru 40</td>
<td>+9%</td>
<td>No increase</td>
</tr>
<tr>
<td>21 thru 30</td>
<td>+12%</td>
<td>No increase</td>
</tr>
<tr>
<td>11 thru 20</td>
<td>+17%</td>
<td>No increase</td>
</tr>
<tr>
<td>6 thru 10</td>
<td>+25%</td>
<td>No increase</td>
</tr>
<tr>
<td>2.6 thru 5</td>
<td>+45%</td>
<td>No increase</td>
</tr>
<tr>
<td>Creep thru 2.5</td>
<td>+55%</td>
<td>No increase</td>
</tr>
<tr>
<td>Creep (2)</td>
<td>+75%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>Stationary</td>
<td>+105%</td>
<td>+10 psi</td>
</tr>
</tbody>
</table>

(1) These load and inflation changes are only required when exceeding the tire manufacturer’s rated speed for the tire.
(2) Apply these increases to Dual Loads and Inflation Pressures.
(3) Creep – Motion for not over 200 feet in a 30-minute period.

Note 1: The inflation pressures shown in the referenced tables are minimum cold pressures for the various loads listed.

Higher pressures should be used as follows:
A. When required by the above speed/load table.
B. When higher pressures are desirable to obtain improved operating performance.
For speeds above 20 mph, the combined increases of A and B should not exceed 20 psi above the inflation specified for the maximum load of the tire.

Note 2: Load limits at various speeds for:
Tires used in highway service at restricted speed.
Mining and logging tires used in intermittent highway service.

*Exceeding the legal speed limit is neither recommended nor endorsed.

B. CONVENTIONAL DIAGONAL (BIAS) PLY TIRES

The service load and minimum (cold) inflation must comply with the following limitations unless a speed restriction is indicated on the tire.*

<table>
<thead>
<tr>
<th>Speed Range (mph)</th>
<th>% Load Change</th>
<th>Inflation Pressure Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 thru 75 (1)</td>
<td>-12%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>66 thru 70 (1)</td>
<td>-4%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>51 thru 65</td>
<td>None</td>
<td>No increase</td>
</tr>
<tr>
<td>41 thru 50</td>
<td>+9%</td>
<td>No increase</td>
</tr>
<tr>
<td>31 thru 40</td>
<td>+16%</td>
<td>No increase</td>
</tr>
<tr>
<td>21 thru 30</td>
<td>+24%</td>
<td>No increase</td>
</tr>
<tr>
<td>11 thru 20</td>
<td>+32%</td>
<td>No increase</td>
</tr>
<tr>
<td>6 thru 10 (2)</td>
<td>+60%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>2.6 thru 5 (2)</td>
<td>+85%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>Creep thru 2.5 (2)</td>
<td>+115%</td>
<td>+10 psi</td>
</tr>
<tr>
<td>Creep (2,3)</td>
<td>+160%</td>
<td>+20 psi</td>
</tr>
<tr>
<td>Stationary (2)</td>
<td>+210%</td>
<td>+20 psi</td>
</tr>
</tbody>
</table>

*Exceeding the legal speed limit is neither recommended nor endorsed.
A tire cannot perform properly unless it is mounted properly on the correct size rim or wheel. The following are general instructions for demounting and mounting MICHELIN® tube-type tires. For detailed instructions on mounting and demounting truck tires on particular types of rims and wheels, refer to the instructions of the rim and wheel manufacturer or the RMA (Rubber Manufacturers Association) wall charts.

WARNING

Do not reinflate any tires that have been run underinflated or flat without careful inspection for damage. If run-flat damage is detected, scrap the tire. A tire is considered run-flat if it is found to be 80% below recommended operating pressure. This can result in serious injury or death. The tire may be damaged on the inside and can explode while you are adding air. The rim parts may be worn, damaged, or dislodged and can explosively separate.

TUBES AND FLAPS FOR COMMERCIAL TRUCK TIRES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>TUBE</th>
<th>TUBE MSPN</th>
<th>FLAP</th>
<th>FLAP MSPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50R15</td>
<td>15/16J</td>
<td>*73993</td>
<td>15x6.00</td>
<td>62152</td>
</tr>
<tr>
<td>8.25R15</td>
<td>15/16J</td>
<td>*73993</td>
<td>15x6.00</td>
<td>62152</td>
</tr>
<tr>
<td>10.00R15</td>
<td>15P</td>
<td>04560</td>
<td>15x7.50</td>
<td>58753</td>
</tr>
<tr>
<td>9.00R16</td>
<td>16N</td>
<td>17786</td>
<td>16x6.00D</td>
<td>94605</td>
</tr>
<tr>
<td>7.50R17</td>
<td>17K</td>
<td>26362</td>
<td>17x6.00D</td>
<td>45608</td>
</tr>
<tr>
<td>335/80R20</td>
<td>20P</td>
<td>06934</td>
<td>20x10.00</td>
<td>47501</td>
</tr>
<tr>
<td>275/80R20</td>
<td>20P</td>
<td>06934</td>
<td>20x10.00</td>
<td>47501</td>
</tr>
<tr>
<td>365/80R20</td>
<td>20Q</td>
<td>39144</td>
<td>20x10.00</td>
<td>47501</td>
</tr>
<tr>
<td>15.5/80R20</td>
<td>20S</td>
<td>32420</td>
<td>20x10.00</td>
<td>47501</td>
</tr>
<tr>
<td>14.00R20</td>
<td>20S</td>
<td>32420</td>
<td>20x10.00</td>
<td>47501</td>
</tr>
<tr>
<td>14.5R20</td>
<td>20S</td>
<td>32420</td>
<td>20x10.00</td>
<td>47501</td>
</tr>
<tr>
<td>395/85R20</td>
<td>20S</td>
<td>32420</td>
<td>20x10.00</td>
<td>47501</td>
</tr>
<tr>
<td>365/85R20</td>
<td>20S</td>
<td>32420</td>
<td>20x10.00</td>
<td>47501</td>
</tr>
<tr>
<td>16.00R20</td>
<td>20V</td>
<td>32961</td>
<td>20x10.00</td>
<td>47501</td>
</tr>
<tr>
<td>10.00R20</td>
<td>20N</td>
<td>17078</td>
<td>20x7.50</td>
<td>44274</td>
</tr>
<tr>
<td>11.00R20</td>
<td>20P</td>
<td>06934</td>
<td>20x8.50</td>
<td>49781</td>
</tr>
<tr>
<td>12.00R20</td>
<td>20Q</td>
<td>39144</td>
<td>20x8.50</td>
<td>49781</td>
</tr>
<tr>
<td>12.00R24</td>
<td>24Q</td>
<td>11708</td>
<td>24/25x8.50</td>
<td>48842</td>
</tr>
</tbody>
</table>

* Use tube MSPN 73993 for CAT Forklifts (15/16J with valve 1221), other truck / industrial applications, use MSPN 17542 (15/16J with valve 570). MSPN 17542 uses same flap and is the same price as MSPN 73993.

MOUNTING LUBRICANT

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Product code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tigre grease</td>
<td>4 Kg</td>
<td>25817</td>
</tr>
</tbody>
</table>
1. SELECTION OF PROPER COMPONENTS AND MATERIALS

a. All tires must be mounted with the proper MICHELIN tube and flap (if required) and rim or wheel as indicated in the specification tables on Page 93. For complete tire specifications, refer to application specific data books.

b. Make certain that rim/wheel components are properly matched and of the correct dimensions for the tire.

c. Always fit a new MICHELIN tube in a new mounting. Since a tube will exhibit growth in size through normal use, an old tube used in a new mounting increases the possibility of tube creasing and chafing, possibly resulting in failure.

d. Always install a new flap in a new mounting. A flap, through extended use, becomes hard and brittle. After a limited time, it will develop a set to match the tire and rim in which it is fitted. Therefore, it will not exactly match a new tire/rim combination.

e. Always install new valve cores and metal valve caps containing plastic or rubber seals. For tires requiring O-rings, be sure to properly install a new silicone O-ring at every tire change.

f. Always use a safety device such as an inflation cage or other restraining device that will constrain all rim/wheel components during an explosive separation of a multi-piece rim/wheel, or during the sudden release of the contained air of a single piece wheel that is in compliance with OSHA (Occupational Safety and Health Administration) standards. Do not bolt restraining device to the floor. Never stand over a tire or in front of a tire when inflating. Always use a clip-on valve chuck with an in-line valve with a pressure gauge or a presettable regulator. Additionally, ensure there is a sufficient length of hose between the clip-on chuck and the in line valve (if one is used) to allow the service technician to stand outside the trajectory path when inflating. Trajectory zone means any potential path or route that a rim/wheel component may travel during an explosive separation, or the sudden release of the pressurized air, or an area at which an airblast from a single piece rim/wheel may be released. The trajectory may deviate from paths that are perpendicular to the assembled position of the rim/wheel at the time of separation or explosion.

NEVER WELD OR APPLY HEAT TO A RIM OR WHEEL ON WHICH A TIRE IS MOUNTED.
2. TIRE AND RIM LUBRICATION

It is essential that an approved tire mounting lubricant be used. Preferred materials for use as bead lubricants are vegetable based and mixed with proper water ratios per manufacturer’s instructions. Never use antifreeze, silicones, or petroleum-base lubricants as this will damage the rubber. Lubricants not mixed to the manufacturer’s specifications may have a harmful effect on the tire and wheel. The lubricant serves the following three purposes:

- Helps minimize the possibility of damage to the tire beads from the mounting tools.
- Helps ease the insertion of the tire onto the rim by lubricating all contacting surfaces.
- Assists proper bead seating (tire/rim centering) and helps to prevent eccentric mountings.

The MICHELIN® product, Tiger Grease 80, MSPN 25817, is specifically formulated for commercial truck tire mounting. It can be obtained through any authorized MICHELIN Truck Tire dealer or by contacting MICHELIN Consumer Care (1-888-622-2306).

Apply a clean lubricant to all portions of the tire bead area and the exposed portion of the flap using sufficient but sparing quantities of lubricant. Also, lubricate the entire rim surface. Avoid using excessive amounts of lubricant, which can become trapped between the tire and tube and can result in tube damage and rapid air loss.

CAUTION: It is important that tire lubricant be clean and free of dirt, sand, metal shavings, or other hard particles. The following practice is recommended:

- Use a fresh supply of tire lubricant each day, drawing from a clean supply source and placing the lubricant in a clean portable container.
- Provide a cover for the portable container and/or other means to prevent contamination of the lubricant when not in use. For lubricants in solution, we suggest the following method, which has proven to be successful in helping to minimize contamination and prevent excess lubricant from entering the tire casing: provide a special cover for the portable container that has a funnel-like device attached. The small opening of the funnel should be sized so that when a swab is inserted through the opening into the reserve of lubricant and then withdrawn, the swab is compressed, removing excess lubricant. This allows the cover to be left in place providing added protection. A mesh false bottom in the container is a further protection against contaminants. The tire should be mounted and inflated promptly before lubricant dries.

3. PREPARATION OF WHEELS, RIMS, AND TIRES

a. Always wear safety goggles or face shields when buffing or grinding rims or wheels.

b. Inspect wheel/rim assemblies for cracks, distortion, and deformation of flanges. Using a file and/or emery cloth, smooth all burrs, welds, dents, etc. that are present on the tire side of the rim. Inspect the condition of bolt holes on the wheels. Rim flange gauges and ball tapes are available for measuring wear and circumference of aluminum wheels.

c. Remove rust with a wire brush and apply a rust inhibiting paint on steel wheels. The maximum paint thickness is 0.003” on the disc face of the wheel.

d. Remove any accumulation of rubber or grease stuck to the tire, being careful not to damage it. Wipe the beads down with a dry rag.
DEMOUNTING TUBE-TYPE TIRES

WARNING

Any inflated tire mounted on a rim contains explosive energy. The use of damaged, mismatched, or improperly assembled tire/rim parts can cause the assembly to burst apart with explosive force. If you are struck by an exploding tire, rim part, or the air blast, you can be seriously injured or killed. Do not attempt to dismount the tire while the assembly is still installed on the vehicle. Use proper tools to demount or mount rim parts. Never use a steel hammer to seat rim parts – use only rubber, plastic, or brass-tipped mallets. Striking a wheel/rim assembly with a hammer of any type can damage the tire or wheel and endanger the installer. Use a steel duck bill hammer only as a wedge. Do not strike the head of a hammer with another hard-faced hammer – use a rim mallet.

1 Before loosening any nuts securing the tire and rim assembly to the vehicle, remove the valve core and deflate completely. If working on a dual assembly, completely deflate both tires. Run a wire or pipe cleaner through the valve stem to ensure complete deflation. This is to prevent a possible accident.

2 Remove the tire and rim assembly from the vehicle and place on the floor with the side ring up.

Rim Tools

3 Run a wire or pipe cleaner through the valve stem to clear the valve stem.

4 Apply lubricant to all surfaces of the bead area of the tire. Use the duck bill hammer, with the rubber rim mallet as a wedge, or a slide hammer.
For two-piece rims/wheels, remove the side ring by pushing the tire bead down. Insert the tapered end of the rim tool into the notch and pry the side ring out of the gutter. Pry progressively around the tire until the side ring is free of the gutter.

For three-piece rims/wheels, remove the lock ring by pushing the side rings and the tire bead down. Insert the tapered end of the rim tool into the notch near the split in the lock ring, push the tool downward, and pry the lock ring outward to remove the gutter from the base. Use the hooked end of the rim tool progressively around the tire to complete the removal, then lift off the side ring.

Unseat the remaining tire bead from the rim, and lift the rim from the tire.
Mounting Tube-Type Tire

Warning

Reassembly and inflation of mismatched parts can result in serious injury or death. Just because parts fit together does not mean that they belong together. Check for proper matching of all rim parts before putting any parts together. Inspect the tire and the rim for any damage that would require them to be placed out of service.

Mismatching tire and rim components is dangerous. A mismatched tire and rim assembly may explode and can result in serious injury or death. This warning applies to any combination of mismatched components and rim combinations. Never assemble a tire and rim unless you have positively identified and correctly matched the parts.

1. Insert the proper size MICHELIN® tube into the tire and partially inflate (3 psi) to round out the tube (with larger sizes it may be necessary to use bead spreaders – see below for mounting instructions).

2. Insert the valve through the flap valve hole. (Make sure the reinforced patch that is directly over the flap valve hole is facing outwards.) Then insert the remainder of the flap into the tire.

3. Check the flap wings to ensure against folding. This is easily accomplished by placing your hand into one tire side, then the other, and then running your hand along the entire flap wing.

4. Inflate the tube until the flap is secured against the tire wall and the beads start to spread apart, making sure not to exceed 3 psi.
Two-Piece Rims
For two-piece rims, place the side ring on the rim base so that the ring split is opposite the valve stem by placing the leading end (end without the notch) of the ring into the groove in the rim, and progressively walk the side ring into place. Ensure the ring is fully seated in the gutter.

Three-Piece Rims
For three-piece rims, place the side ring on the rim base and stand on the ring to position it below the gutter rim base. Snap the leading end (end without the notch) of the lock ring into the gutter of the rim base, and progressively walk the lock ring into place. Ensure the ring is fully seated in the gutter.

Apply a proper tire lubricant to both beads, exposed flap, and fully to the rim. Make sure that excess lubricant does not run down into the tire.

Lay the rim flat on the floor with the gutter side up. Place tire, tube, and flap on the rim, taking care to center the valve in the slot.

Three piece rims positioned.

Snap and walk ring into place.
MOUNTING OF TUBE-TYPE TIRES USING MANUAL SPREADERS
1. Follow Steps 1 through 3 of the “Mounting of Tube-Type Tires.” However, before inserting the flap into the tire, position two bead spreaders in the following manner:
 a. Place the first at a 90° angle to the valve. (Flap is positioned between the spreader and the tube.)
 b. Place the second directly opposite the first.
 c. Spread the beads and insert the flap.
 d. Close the beads, remove spreaders.
2. Follow Steps 4 through 8 of the “Mounting of Tube-Type Tires.”

MOUNTING OF TUBE-TYPE TIRES USING AUTOMATIC SPREADERS
1. Spread the tire beads.
2. Inflate the tube to approximately 3 psi.
3. Insert the tube into the tire.
4. Insert the valve through the flap valve hole. (As mentioned, the flap reinforced valve area must face outwards.) Insert the remainder of the flap into the tire.
5. Close the beads.
6. Apply a proper tire lubricant to the inside and outside surfaces of both beads and to that portion of the flap that appears between the beads. **Make sure that excess lubricant does not run down into the tire.**
7. Follow Steps 4 through 8 of the “Mounting of Tube-Type Tires.”

INFLATION OF TUBE-TYPE TIRES
1. An air line with an extension (30” minimum), in-line gauge, and a clip-on valve chuck should be used for inflation. Remove valve core and lay the assembly flat on the ground. Using an approved restraining device, inflate partially to seat beads to no more than 3 psi. While the tire is still in the restraining device, make sure all rim components are centered and locked properly. If not, the tire must be deflated, broken down, relubricated and reinflated. Do not attempt to seat the lock ring by means of a hammer.

 2. Deflate the tire by removing the air line. This is to allow the tube to relax, thus, eliminating any wrinkles or uneven stretching that may have occurred during primary inflation.
3. **With the valve core still removed, place the dual and wheel assembly into an approved safety cage or other approved restraining device meeting OSHA (Occupational Safety and Health Administration) standards,** and reinflate the tire to the pressure shown on the sidewall in order to ensure proper bead seating. Then adjust the tire to the proper operating pressure. Never stand over a tire or in front of a tire when inflating. Always use a clip-on valve chuck with an in-line valve with a pressure gauge or a presettable regulator and a sufficient length of hose between the clip-on chuck and in-line valve (if one is used) to allow the employee to stand outside the trajectory path when inflating. RMA (Rubber Manufacturers Association) requires that all steel sidewall radial tires are inflated without a valve core.
4. Reinspect the assembly for proper positioning and seating of all components.
5. Check for leaks, and install a suitable valve cap.

WARNING

Do not reinflate any tires that have been run underinflated or flat without careful inspection for damage.

If run-flat damage is detected, scrap the tire. A tire is considered run-flat if it is found to be 80% below recommended operating pressure.
EFFECT & CAUSE

All scrap tire failures are cause and effect related. In the majority of the situations, it is the effect that we first see when we look at the tire damage. However, tire condition "effects" may have many causes. Often a pattern can be found that may point to changes needed to avoid future scrap failures of this nature. The majority of tubeless commercial scrap conditions are found in the following damage categories:

- RUN-FLAT .. 102-103
- AIR INFILTRATION 104-105
- PINCH SHOCK 106
- MINIMUM DUAL SPACING 106
- IMPACT DAMAGE 107
- FATIGUE RELATED DAMAGE 108
- BEAD DAMAGE 109
- ADDITIONAL CAUSES:
 REPAIRS AND RETREADING CONDITIONS 110-111
- SCRAP INSPECTION FORM 112
RUN-FLAT

Any tire operating at less than 80% of the recommended air pressure for the load being carried.

- **EFFECT:** Inner Liner Cracking
 CAUSE: Underinflation

- **EFFECT:** Discoloration, Blistering, and/or Separations of the Inner Liner
 CAUSE: Continued Operation After Loss of Inflation Pressure

- **EFFECT:** Leaking Valve, Grommet, or Wheel/Rim
 CAUSE: Improper Installation – Torque, Lubrication, Corrosion

- **EFFECT:** Crack in the Repair Unit
 CAUSE: Improper Repair or Improper Repair Procedures

- **EFFECT:** Crack Around Nail Hole Plug
 CAUSE: Improper Repair or Improper Repair Procedures
Section Eight: Tire Damage

EFFECT: Crown/Sidewall Injury Resulting in Air Loss
CAUSE: Nail Hole Bolt/Debris Penetrating the Liner

EFFECT: Sidewall separation Due to Air Infiltration Resulting from Bead Damage
CAUSE: Due to Mount/Dismount

EFFECT: Run-flat
CAUSE: Crown Perforation/Penetration
AIR INFILTRATION

Any damage that opens the inner liner and allows air under pressure to migrate within the steel and rubber products.

EFFECT: Premature Failure of Repair
CAUSE: Object that Penetrates Into the Tire and Through the Inner Liner

EFFECT: Radial Liner Split
CAUSE: Due to Impact

EFFECT: Missed Nail Hole
CAUSE: Repaired from the Outside Resulting in Missed Damage

EFFECT: Bead Area or Inner Liner Damage
CAUSE: Improper Demounting Procedure, Lack of Lubricant
Section Eight: Tire Damage

EFFECT: Inner Liner Cut
CAUSE: Shipping or Mounting Damage

EFFECT: Inner Liner Cut
CAUSE: Shipping or Mounting Damage

EFFECT: Inner Liner Burn
CAUSE: Electrical Discharge Damage

EFFECT: Sidewall Separation Due to Air Infiltration
CAUSE: Improper Repair
PINCH SHOCK

Crown/sidewall impact, crushing the tire and creating internal damage to the rubber products due to severe crushing.
• Impact with a curb, pothole, road debris, etc.
• Severe impact with any blunt object

EFFECT: External Rubber Damage
CAUSE: Severe Impact

EFFECT: Internal Creasing
CAUSE: Severe Impact

EFFECT: Small Bulge
CAUSE: Impact With a Curb, Pothole, Road Debris, etc.

MINIMUM DUAL SPACING

EFFECT: Friction Severely Weakens the Casing
CAUSE: Improper Minimum Dual Spacing
IMPACT DAMAGE

- With or without a rupture - zipper
- Crown, shoulder, or sidewall
- Impact with a sharp cutting object (A rupture usually indicates a rather severe impact.)

EFFECT: Break in Tire Interior Surface, Pulled or Loose Cords
CAUSE: Severe Impact With Any Blunt Object

EFFECT: Impact Damage
CAUSE: Severe Impact With Any Blunt Object

EFFECT: Sidewall Damage
CAUSE: Object Wedged Between Dual Assembly

EFFECT: Impact Damage
CAUSE: Sidewall Rupture from Shock

EFFECT: Inner Liner Split
CAUSE: Sidewall Impact

EFFECT: Impact Damage
CAUSE: Sidewall Rupture from Shock
FATIGUE RELATED DAMAGE

- With or without a rupture – zipper*
- Any damage that will allow the casing to oxidize or the casing plies to weaken or break
- Run-flat tires (mainly dual positions)
- Impacts to steel (not filled or repaired)
- Improper repair or improper repair procedures (premature failure of repair)

*ZIPPER

A fatigue related damage, with or without a rupture, occurs in the sidewall flex area of steel radial light and medium truck tires when it is subjected to excessive flexing or heat. This zipper rupture is a spontaneous burst of compressed air and the resulting rupture can range in length anywhere from 12 inches to 3 feet circumferentially around the tire. This is caused by the damage and weakening of the radial steel cables as a result of underinflation and the tire running flat. Eventually, the air pressure becomes too great for the cables to hold, and the area ruptures with tremendous force.
BEAD DAMAGE

Bead turning, cracking/splitting, unwrapping.
- Heavy brake heat generating operations
- Mechanical brake system out of specification
- Incorrect wheel width
- Excessive flex from overload/underinflation
- Mounting/Demounting (insufficient lubrication, improper tool use, aggravated by heat (beads become brittle))

Tire inspection should always include a thorough inspection of both sidewalls and inner liner, as this may reveal any potential damage condition that would cause the tire to become scrap. Inner liner examination for creases, wrinkling, discoloration, or insufficient repairs, and exterior examination for signs of bumps or undulations, as well as broken cords, could be potential out of service causes. Proper OSHA (Occupational Safety and Health Administration) regulations must be followed when putting any tire/rim back in service. After the tire has been inflated to 20 psi in a safety cage, it should undergo another sidewall inspection for distortions, undulations, or popping noise indicating a breaking of the steel cords. If this is the case, immediately deflate the tire and scrap. If no damage is detected, continue to inflate to the maximum air pressure marked on the sidewall. Inspect the sidewall from a distance looking for distortions and/or undulations, and listen for a popping noise. If none exist, then insert valve core and return tire to service after adjusting the pressure.

EFFECT: Heating and Deformation of the Bead Rubber
CAUSE: Excessive Heat

EFFECT: Bead Turning, Cracking/Splitting, Unwrapping From Heat
CAUSE: Excessive Heat

EFFECT: Bead Turning, Cracking/Splitting, Unwrapping From Heat
CAUSE: Excessive Heat
ADDITIONAL CAUSES: REPAIRS & RETREADING CONDITIONS

Improperly Aligned Repair (Note that the arrows on the patch do not point toward the beads.)

Rupture on Improperly Aligned Repair (Note that the arrows on the patch do not point toward the beads.)

Bad Sidewall Spot Repair

Bad Bead Repair

Tread Edge Lifting

Porosity
Section Eight: Tire Damage

Improper Repair, Tube Repair Patch In Radial Tire, and Bead Damage from Demounting

EFFECT: Improper Repair or Improper Repair Procedures
CAUSE: Premature Failure of Repair

Open Splice Joint

Improper Repair, Bias Ply Patch In a Radial Tire, Note Also the Misalignment

EFFECT: Improper/Incomplete Repair
CAUSE: Internal Sidewall Damage from Penetrating Object Not Repaired

Bridged Repair (Rupture, Split, or Cracking of the Repair Material)
SCRAP INSPECTION FORM

EXAMPLE

Fleet: ___________________________ **Date:** ___________________________

<table>
<thead>
<tr>
<th>SIZE</th>
<th>TYPE</th>
<th>MFR.</th>
<th>MFR. DOT</th>
<th>TREAD DEPTH</th>
<th>RETREAD INFO</th>
<th>CONDITIONS</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>275/80R22.5</td>
<td>XDA-HT</td>
<td>MX</td>
<td>B6</td>
<td>29</td>
<td>92</td>
<td>07/32</td>
<td>2</td>
</tr>
<tr>
<td>275/80R22.5</td>
<td>XT-1</td>
<td>MX</td>
<td>B6</td>
<td>4</td>
<td>98</td>
<td>05/32</td>
<td>0</td>
</tr>
<tr>
<td>275/80R22.5</td>
<td>XT-1</td>
<td>MX</td>
<td>B6</td>
<td>1</td>
<td>98</td>
<td>08/32</td>
<td>0</td>
</tr>
<tr>
<td>275/80R22.5</td>
<td>XDN2</td>
<td>MX</td>
<td>M5</td>
<td>35</td>
<td>95</td>
<td>07/32</td>
<td>1</td>
</tr>
</tbody>
</table>

Tire Condition Index: Effect and Cause

- RF = Run-flat
- AIF = Air Infiltration
- PS = Pinch Shock
- IM = Impact
- FAT = Fatigue
- BD = Bead Damage
- ZP = Circumferential Fatigue Rupture (Zipper)
- SP = Sidewall Penetration
- SI = Sidewall Separation/Damage Induced
- CD = Bead Damage From Curbing
- IR = Improper Nail Hole Repair

SECTION NINE

Appendix

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL INFORMATION</td>
<td>114-117</td>
</tr>
<tr>
<td>ALIGNMENT – FIELD METHOD (ATTACC)</td>
<td>118-119</td>
</tr>
<tr>
<td>RUNOUT TOLERANCES</td>
<td>120-121</td>
</tr>
<tr>
<td>CASING MANAGEMENT</td>
<td>122-123</td>
</tr>
<tr>
<td>COLD CLIMATE PRESSURE CORRECTION DATA</td>
<td>123</td>
</tr>
<tr>
<td>COST ANALYSIS</td>
<td>124</td>
</tr>
<tr>
<td>SIX CRITICAL FUNDAMENTALS THAT COST MONEY</td>
<td>124</td>
</tr>
<tr>
<td>FUEL SAVINGS</td>
<td>125</td>
</tr>
<tr>
<td>WHEEL TYPE</td>
<td>126-128</td>
</tr>
<tr>
<td>TORQUE SPECIFICATIONS</td>
<td>128-129</td>
</tr>
<tr>
<td>MOUNTING PROCEDURES FOR 16.00R20 AND 24R21</td>
<td>130</td>
</tr>
<tr>
<td>TIRE REVOLUTIONS PER MILE CALCULATION</td>
<td>131</td>
</tr>
<tr>
<td>OUT-OF-SERVICE CONDITIONS</td>
<td>132-133</td>
</tr>
<tr>
<td>RUNOUT AND VIBRATION DIAGNOSIS</td>
<td>134-135</td>
</tr>
<tr>
<td>SERVICING MULTI-PIECE & SINGLE PIECE RIM/WHEELS (OSHA 1910.177)</td>
<td>136-138</td>
</tr>
<tr>
<td>REGROOVING</td>
<td>139-140</td>
</tr>
<tr>
<td>PUBLICATIONS, VIDEOS, AND WEBSITES</td>
<td>141-142</td>
</tr>
<tr>
<td>INDEX</td>
<td>143-144</td>
</tr>
</tbody>
</table>
General Information

Units of Measurement

<table>
<thead>
<tr>
<th>Quantity</th>
<th>S.I. Units</th>
<th>Other Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>m (meter)</td>
<td>1 inch (") = 0.0254 m or 25.4 mm 1 mile = 1609 m (1.609 km) 1 kilometer = 0.621 mile</td>
</tr>
<tr>
<td>Mass</td>
<td>kg (kilogram)</td>
<td>1 pound (lb) = 0.4536 kg 1 kilogram (kg) = 2.205 lbs.</td>
</tr>
<tr>
<td>Pressure</td>
<td>kPa (Pascal)</td>
<td>1 bar* = 100 kPa 1 psi = 6.895 kPa 1 pound per square inch = 4903.17 kPa 1 kg/cm² = 98.066 kPa</td>
</tr>
<tr>
<td>Speed</td>
<td>m/s (meter per second)</td>
<td>1 kilometer per hour (kph)* = 0.27778 m/s 1 mile per hour (mph) = 0.4470 m/s (or 1.60935 kph)</td>
</tr>
</tbody>
</table>

* Non S.I. unit to be retained for use in specialized fields.

Pressure Unit Conversion Table

<table>
<thead>
<tr>
<th>kPa</th>
<th>bar</th>
<th>lb/in²*</th>
<th>kg/cm²*</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0</td>
<td>15</td>
<td>1.0</td>
</tr>
<tr>
<td>150</td>
<td>1.5</td>
<td>22</td>
<td>1.5</td>
</tr>
<tr>
<td>200</td>
<td>2.0</td>
<td>29</td>
<td>2.0</td>
</tr>
<tr>
<td>250</td>
<td>2.5</td>
<td>36</td>
<td>2.5</td>
</tr>
<tr>
<td>300</td>
<td>3.0</td>
<td>44</td>
<td>3.1</td>
</tr>
<tr>
<td>350</td>
<td>3.5</td>
<td>51</td>
<td>3.6</td>
</tr>
<tr>
<td>400</td>
<td>4.0</td>
<td>58</td>
<td>4.1</td>
</tr>
<tr>
<td>450</td>
<td>4.5</td>
<td>65</td>
<td>4.6</td>
</tr>
<tr>
<td>500</td>
<td>5.0</td>
<td>73</td>
<td>5.1</td>
</tr>
<tr>
<td>550</td>
<td>5.5</td>
<td>80</td>
<td>5.6</td>
</tr>
<tr>
<td>600</td>
<td>6.0</td>
<td>87</td>
<td>6.1</td>
</tr>
<tr>
<td>650</td>
<td>6.5</td>
<td>94</td>
<td>6.6</td>
</tr>
<tr>
<td>700</td>
<td>7.0</td>
<td>102</td>
<td>7.1</td>
</tr>
<tr>
<td>750</td>
<td>7.5</td>
<td>109</td>
<td>7.7</td>
</tr>
<tr>
<td>800</td>
<td>8.0</td>
<td>116</td>
<td>8.2</td>
</tr>
<tr>
<td>850</td>
<td>8.5</td>
<td>123</td>
<td>8.7</td>
</tr>
<tr>
<td>900</td>
<td>9.0</td>
<td>131</td>
<td>9.2</td>
</tr>
<tr>
<td>950</td>
<td>9.5</td>
<td>138</td>
<td>9.7</td>
</tr>
<tr>
<td>1000</td>
<td>10.0</td>
<td>145</td>
<td>10.2</td>
</tr>
<tr>
<td>1050</td>
<td>10.5</td>
<td>152</td>
<td>10.7</td>
</tr>
</tbody>
</table>

* Values in psi and kg/cm² rounded to the nearest practical unit.

Load Range/Ply Rating

<table>
<thead>
<tr>
<th>Ply Rating</th>
<th>B – 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C – 6</td>
<td></td>
</tr>
<tr>
<td>D – 8</td>
<td></td>
</tr>
<tr>
<td>E – 10</td>
<td></td>
</tr>
<tr>
<td>F – 12</td>
<td></td>
</tr>
<tr>
<td>G – 14</td>
<td></td>
</tr>
<tr>
<td>H – 16</td>
<td></td>
</tr>
<tr>
<td>J – 18</td>
<td></td>
</tr>
<tr>
<td>L – 20</td>
<td></td>
</tr>
<tr>
<td>M – 22</td>
<td></td>
</tr>
</tbody>
</table>

* Values in psi and kg/cm² rounded to the nearest practical unit.
APPROXIMATE WEIGHT OF MATERIALS

Most materials and commodities vary in weight – the following weights should be used only for approximation purposes. Exact weights should be obtained from local sources when making recommendations for truck or tractor-trailer equipment.

<table>
<thead>
<tr>
<th>Material</th>
<th>Lbs. per Cu. Ft</th>
<th>No. of Pounds</th>
<th>Per:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beans, dry</td>
<td></td>
<td>60</td>
<td>Bushel</td>
</tr>
<tr>
<td>Cement, Portland</td>
<td></td>
<td>94</td>
<td>Bag</td>
</tr>
<tr>
<td>Clay and Gravel, dry</td>
<td>100</td>
<td>2700</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Clay and Gravel, wet</td>
<td>65</td>
<td>1755</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Coal, Hard or Anthracite, broken</td>
<td>52-57</td>
<td>1400-1540</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Coal, Soft or Bituminous, solid</td>
<td>79-84</td>
<td>2134-2270</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Concrete</td>
<td>120-155</td>
<td>3200-4185</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Corn, in ear</td>
<td></td>
<td>70</td>
<td>Bushel</td>
</tr>
<tr>
<td>Corn, shelled</td>
<td></td>
<td>56</td>
<td>Bushel</td>
</tr>
<tr>
<td>Corn Syrup</td>
<td>86</td>
<td>11.5</td>
<td>Gallon</td>
</tr>
<tr>
<td>Crude Oil</td>
<td>52</td>
<td>700</td>
<td>100 Gal.</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>52-74</td>
<td>695-795</td>
<td>100 Gal.</td>
</tr>
<tr>
<td>Gasoline</td>
<td>45</td>
<td>600</td>
<td>100 Gal.</td>
</tr>
<tr>
<td>Gravel</td>
<td>100-120</td>
<td>2700-3240</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Gravel and Sand, dry, loose</td>
<td>90-100</td>
<td>2430-2862</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Gravel and Sand, dry, packed</td>
<td>110</td>
<td>2970</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Gravel and Sand, wet</td>
<td>120</td>
<td>3240</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Milk</td>
<td></td>
<td>845-865</td>
<td>100 Gal.</td>
</tr>
<tr>
<td>Paper, average weight</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oats</td>
<td></td>
<td>32</td>
<td>Bushel</td>
</tr>
<tr>
<td>Potatoes, White or Irish</td>
<td></td>
<td>60</td>
<td>Bushel</td>
</tr>
<tr>
<td>Petroleum</td>
<td></td>
<td>800</td>
<td>100 Gal.</td>
</tr>
<tr>
<td>Sand, dry, loose</td>
<td>90-106</td>
<td>2430-2860</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Sand, moist, loose</td>
<td>120</td>
<td>3240</td>
<td>Cu. Yd.</td>
</tr>
<tr>
<td>Soy Beans</td>
<td></td>
<td>60</td>
<td>Bushel</td>
</tr>
<tr>
<td>Water</td>
<td>62.4</td>
<td>835</td>
<td>100 Gal.</td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
<td>60</td>
<td>Bushel</td>
</tr>
</tbody>
</table>
LOAD INDEX

The ISO LOAD INDEX is a numerical code associated with the maximum load a tire can carry at the speed indicated by its SPEED* SYMBOL under service conditions specified by the tire manufacturer. (1 kg = 2.205 lbs.)

*Exceeding the legal speed limit is neither recommended nor endorsed.
Size: 275/80R22.5
Overall Diameter: 40.1

<table>
<thead>
<tr>
<th>Inches (decimal)</th>
<th>Inches (fraction)</th>
<th>Millimeters</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03125</td>
<td>1/32</td>
<td>0.8</td>
<td>0.04</td>
</tr>
<tr>
<td>0.06250</td>
<td>1/16</td>
<td>1.6</td>
<td>0.09</td>
</tr>
<tr>
<td>0.09375</td>
<td>3/32</td>
<td>2.4</td>
<td>0.13</td>
</tr>
<tr>
<td>0.12500</td>
<td>1/8</td>
<td>3.2</td>
<td>0.18</td>
</tr>
<tr>
<td>0.15625</td>
<td>5/32</td>
<td>4.0</td>
<td>0.22</td>
</tr>
<tr>
<td>0.18750</td>
<td>3/16</td>
<td>4.8</td>
<td>0.27</td>
</tr>
<tr>
<td>0.21875</td>
<td>7/32</td>
<td>5.6</td>
<td>0.31</td>
</tr>
<tr>
<td>0.25000</td>
<td>1/4</td>
<td>6.4</td>
<td>0.36</td>
</tr>
<tr>
<td>0.28125</td>
<td>9/32</td>
<td>7.1</td>
<td>0.40</td>
</tr>
<tr>
<td>0.31250</td>
<td>5/16</td>
<td>7.9</td>
<td>0.45</td>
</tr>
<tr>
<td>0.34375</td>
<td>11/32</td>
<td>8.7</td>
<td>0.49</td>
</tr>
<tr>
<td>0.37500</td>
<td>3/8</td>
<td>9.5</td>
<td>0.54</td>
</tr>
<tr>
<td>0.40625</td>
<td>13/32</td>
<td>10.3</td>
<td>0.58</td>
</tr>
<tr>
<td>0.43750</td>
<td>7/16</td>
<td>11.1</td>
<td>0.63</td>
</tr>
<tr>
<td>0.46875</td>
<td>15/32</td>
<td>11.9</td>
<td>0.67</td>
</tr>
<tr>
<td>0.50000</td>
<td>1/2</td>
<td>12.7</td>
<td>0.71</td>
</tr>
</tbody>
</table>

SPEED SYMBOL

The ISO* SPEED SYMBOL indicates the speed at which the tire can carry a load corresponding to its Load Index under service conditions specified by the tire manufacturer.**

<table>
<thead>
<tr>
<th>Speed Symbol</th>
<th>kph</th>
<th>mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>A2</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>A3</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>A4</td>
<td>20</td>
<td>12.5</td>
</tr>
<tr>
<td>A5</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>A6</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>A7</td>
<td>35</td>
<td>22.5</td>
</tr>
<tr>
<td>A8</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>D</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>E</td>
<td>70</td>
<td>43</td>
</tr>
<tr>
<td>F</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>G</td>
<td>90</td>
<td>56</td>
</tr>
<tr>
<td>J</td>
<td>100</td>
<td>62</td>
</tr>
<tr>
<td>K</td>
<td>110</td>
<td>68</td>
</tr>
<tr>
<td>L</td>
<td>120</td>
<td>75</td>
</tr>
<tr>
<td>M</td>
<td>130</td>
<td>81</td>
</tr>
<tr>
<td>N</td>
<td>140</td>
<td>87</td>
</tr>
</tbody>
</table>

* International Standardization Organization
** Exceeding the legal speed limit is neither recommended nor endorsed.
ALIGNMENT - FIELD METHOD

ATTACC PLUS SYSTEM (Axle, Thrust, Toe, Ackerman, Camber, Caster Parts, Labor, User Saves)
- Simple vehicle measurement system
- Quick, low cost, yet effective method
- Determine if poor alignment conditions exist
- Minimum tools required
Refer to MICHELIN Video, ATTACC Plus (MWV41200) for reference.

SET-UP INSTRUCTION PROCEDURES
TOOLS:
- Chalk Line (no chalk)
- 2 Cans of White Spray Paint
- 2 Large Heavy Duty Plastic Bags
- Vehicle Jack (10 Tons)
- Line Level and Wheel Chocks
- Metric Tape Measure
- 1 pair of Jack Stands
- Toe-Scribe
- Flashlight
- 1 T-45A Tire Iron

SURFACE: Inspection site should be fairly level; use Line Level if necessary to determine slope.

STEER/DRIVE TIRES: Note tread design, DOT, tread depth, psi, tire conditions and mileage, and all normal pertinent vehicle information.

VEHICLE POSITIONING
1. Drive vehicle straight into inspection site, at least 3 full vehicle lengths, to ensure it’s straight into site. Driving into and backing out of the work area several times will ensure the vehicle’s suspension components are relaxed to achieve proper measurements.
2. Allow vehicle to roll to a stop, shut-off the engine, and let up on the clutch.
3. Let vehicle fully stop by transmission, no brakes.
4. Engage tractor parking brakes and take out of brakes; place wheel chocks on the drive tires.

MEASUREMENTS
Record all measurements.

Front of Vehicle
1. Measure steering axle skew from the front of the outside U-bolt to the zerk fitting (or bolt) on the front spring pin perch. Tolerance is ± 3/16” or 5 mm side to side.
2. Measure for straight ahead steering from the inner wheel flange to edge of the leaf spring (if newer style tapered frame) or frame on both sides of the vehicle to ensure the steer tires are straight ahead (tolerance is 1/32” or 1 mm side to side). Adjust the steering wheels as necessary to come within tolerance. Mark the steering wheel column with a crayon for future reference.
3. Measure for steering axle offset from the frame rail to the vertical center line on the tire on both sides. Tolerance is ± 3/16” or 5 mm from centerline of vehicle.
4. Steering Stops: Ensure they are in place on left and right sides, and measure length. Stops control the angle of the turn and may be a consideration if abnormal steer tire wear is present.
5. Check front end components and toe by jacking up front end after placing wheel chocks on the rear tires. Place the floor jack under the axle for support, use the T-45A tire iron by inserting into the wheel assembly at the 6 o’clock position and place your other hand at the 12 o’clock position. With a rocking type motion try to move the tire assembly up with the lower bar and out towards you with your left hand. If play is felt, it is probably the result of loose wheel bearings or worn kingpin bushings. If you observe the brake chamber moving, it can be isolated to the kingpin bushing. If it does not move, it is likely the wheel bearings.
 With your hands placed at the 3 o’clock and at the 9 o’clock positions on the tire, try to move the tire in a rapid “left turn – right turn” type of motion. Feel and listen for any play. Play in this area would indicate either loose or worn tie rod ends, steering arms, drag link ends, or steering box play. Any play in this area should be further inspected to ensure it is within the vehicle and/or part manufacturer’s specifications.
 Two additional parts that can cause tire wear need to be checked. First, see if the brake drum has a balance weight and second, look for wear on the spring shackle assembly. This check is more difficult to make, and there are various ways to inspect for this wear. Consult the part manufacturer for the proper way to inspect.
 On a dry tire, with a can of spray paint, marker, or chalk (dusting with any coating material suitable for marking a section of tread), “highlight” a section of the tread area around the tire. With a sharp pointed scribe, mark a thin line in the highlighted area while rotating the tire. (Note: At this point observe the amount of radial and lateral runout by referencing this line to the rotating tire. Any runout greater than 3/32nd inch should be further investigated for improper tire bead seating, improper tire/wheel runout and/or improper wheel torque procedure during installation.)
 Repeat this process on the other steer tire. Check for steer ahead by referencing the mark on the steering wheel column (or measure as in Paragraph 2 above), and lower the vehicle on the folded plastic bags. Plastic should be folded to just larger than the tire footprint so that no part of the steer tires will make contact with the ground. Prior to measuring, you should “joust” the vehicle by standing on the step and shaking the unit with your body weight. This will further relax the front suspension, giving you a correct toe reading. Once the steer tires are down, measure from side to side between the scribed lines, first rear, then front, with a tape measure or a fine lined toe gauge to determine relative toe. Do this with the paint cans on the ground, centered...
on the scribe line, and measure the distance between the lines on the left and right tire at the paint can height. Subtract front from rear; positive result indicates toe-in, negative is toe-out. At this paint can height: total toe-in should be positive +1 mm so that the tires will run in a straight line under a dynamic, loaded condition. Recommended toe setting is +1/16” (1.5 mm).

6. If checking for camber, with wheels straight ahead, drop a plumb line off the front fender over the tire assembly center and measure the distance, using millimeters, between the string and rim flange at the top and bottom. Divide your difference by 10 to convert millimeters to degrees. Use the paint can to extend out from the fender if necessary. Repeat the procedure on the other steer position. Consider any floor slope, mismatched air pressures, or mismatched tread depths.

Rear of Vehicle

1. Measure for drive axle offset by measuring, at each drive axle wheel position, from the inner wheel flange to the inside of the frame rail (tolerance: 3/16” or 5 mm side to side).
2. Check ride height by measuring the distance from the lower part of the frame rail to the bottom of the air spring (bag) housing. Verify manufacturer’s recommendation for vehicle type.

3. Measure for tandem axle skew by measuring between the rim flanges. Kneel between the outside of the tires. Hook the metric tape measure at hub-height on one, and by using a swinging arc on the other, determine the shortest distance between them. Take a similar measurement on the other side of the vehicle (tolerance is 1/8” or 3 mm between axle ends).
4. Measure for drive axle thrust by using the string from the front drive axle to the steer position. Attach the string to the drive tire at hub-height, bring it across the rear sidewall, move to the steering axle, bring the string in toward the front rim until it touches the drive tire’s front sidewall, and measure the distance between the string and disc face of the rim (just below the dust cap). Repeat this method on the other side.

With all data recorded, review measurement of drive axle offset. Any significant drive axle offset, if found (± 3/16” or ± 5 mm), must be factored into the readings of drive axle thrust as determined above by adding or subtracting the offset from the appropriate side (string to front wheel flange measurement ± offset).

Draw a picture of the steer and drive axle orientation using recorded axle skew measurements.

Drive axle skew tolerance is based on wheel base. 19/32” or 15 mm < 150”, 3/4” or 20 mm 150-200”, 1” or 25 mm > 200”.

ATTACC PLUS WORKSHEET
FRONT END ALIGNMENT

TOE

TOE-IN TARGET
- Steer: + 1/16" (+ 1.5 mm)
- Drive & Trailer: ± 1/8" (± 3 mm)

MEASUREMENT
- J – I

SYMPTOMS
- Feathered wear

CAMBER

CAMBER TARGET
- Steer (Static, Unloaded): 0° to 1/4° or 0 to 2.5 mm
- Drive & Trailer: ± 1/4° or ± 0 to 2.5 mm

MEASUREMENT
- K – L

SYMPTOMS
- Shoulder wear
- Pulling to the side with most positive camber

CASTER

CASTER TARGET
- Steer only: Left + 3 1/2° Right + 4°

MEASUREMENT
- Alignment machine

SYMPTOMS
- Caster too low: Steering wander; slow or no return of steering wheel to center following a turn
- Caster too high: Possible shimmy and/or harsh ride; rapid return of steering wheel to center with possible overshoot
- Pulls to side with least positive caster
AXLE ALIGNMENT

TANDEM SCRUB ANGLE, SKEW, OR PARALLELISM

| Target | 0° BibAlign Tolerance .10°
| ATTACC Plus Tolerance 1/8” or 3 mm |
| Measurement | A ± B |
| Symptoms | Steer tire shoulder wear
| Excessive drive tire wear
| Pulling
| Tandem hop |

THRUST ANGLE DEVIATION

| Target | 0° BibAlign Tolerance < .15°
| ATTACC Plus Tolerance ± 15 mm for
| <150" WB, 20 mm for 150-200" WB,
| 25 mm >200" WB |
| Measurement | C ± D |
| Symptoms | Steer tire shoulder wear
| Pulling |

STEERING AXLE OFFSET

| Target | 0° ATTACC Plus Tolerance ± 5 mm |
| Measurement | (E ± F) / 2 |
| Symptoms | Steer tire shoulder wear
| Pulling |

DRIVE AXLE OFFSET

| Target | 0" BibAlign Tolerance ± 15 mm
| ATTACC Plus Tolerance ± 5 mm |
| Measurement | (G ± H) / 2 |
| Symptoms | Pulling |

STEERING AXLE SKEW

| Target | 0" BibAlign Tolerance ± 0.75°
| ATTACC Plus Tolerance ± 5 mm |
| Measurement | Alignment Machine
| Grease Zerk Fitting to U-Bolt (Left and Right) |
| Symptoms | Pulling |
TIRE MANAGEMENT

The goal of every truck operator is to achieve the lowest possible operating cost, taking advantage of the performance built into each high tech MICHELIN® radial truck tire. Tire maintenance, proper air pressures, repairs, vehicle alignment, and retreading, are all keys to help ensure maximized performance and extended casing life. Over the past 10 years, a number of operational and product changes have occurred that should be considered when establishing tire use patterns. The single most important point of any program is “Know Your Customer.”

TIRE CHANGES

1. New Tires: Today’s wider treads and deeper tread depths provide more original tread miles. The tire arrives at the retreader with more time in service, more miles, and exposure to road conditions.
2. Retread Changes: Wider treads, new tread designs, and new compounds have increased retread mileages.

VEHICLE CHANGES

1. Longer Trailers: There has been a move from 40’ to 48’ and 53’ trailers as standards in the contract and private carriage business.
2. Wider Trailers: Widths have increased from 96” to 102”. The combination of longer and wider trailers increases the frequency of the duals being curbed.
3. Setback Front Axles: Moving the steer axle back increases stress on steer tires and load efficiency by allowing better load distribution. The result is higher average axle loads.
4. Electronic Engines: Better engine control and more efficient operation improve the ability of the vehicle to maintain higher cruise speeds.*

OPERATIONAL CHANGES

1. Speed limit: The national limit has continually increased in the past decade.*
2. GVW (Gross Vehicle Weight): With the Surface Transportation Assistance Act of 1983, the weight limits went from 73,280 lbs. to 80,000 lbs. With setback axles, you can realistically load to 80,000 lbs.

All of these changes lead to the casing arriving at the retread stage with a higher level of fatigue. To utilize these casings to their maximum, casing management should be employed in the selection of the retread.

CASING MANAGEMENT TODAY

Highway fleets typically employ the casing management pattern below:

<table>
<thead>
<tr>
<th>Tire First Used On</th>
<th>Position of First Retread Use</th>
<th>Position of Subsequent Retread Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer</td>
<td>Drive or Trailer</td>
<td>Drive or Trailer</td>
</tr>
<tr>
<td>Drive</td>
<td>Drive</td>
<td>Drive</td>
</tr>
<tr>
<td>Trailer</td>
<td>Trailer</td>
<td>Trailer</td>
</tr>
</tbody>
</table>

In terms of casing fatigue, the severity of use is as follows:

• **Drive Axle – most fatigue.** New drive tires (lug type) often can accumulate twice as many miles (or more) before retreading than new steer or trailer tires can. The same is true for drive axle lug type retreads. The tires also run hotter (deeper tread) and with more torque.

• **Steer Axle – moderate fatigue.** Steer axle tires operate at higher average loads than drive or trailer tires (20 to 40% higher). However, they wear out sooner than drive tires and are moved to lighter axles in the retread stage.

• **Trailer Axle – least fatigue.** The trailer tire starts life with a shallow (cooler) tread and is usually retreaded with a shallow retread. Annual miles are low. The trailer tire casing usually sees more curb abuse, neglect, and old age problems.

Thus, the practice of retreading new drive axle tires back to the drive axle puts the most highly fatigued casing back onto the most highly stressed wheel position.

CASING MANAGEMENT FOR THE FUTURE

The following guidelines are recommended in sorting casings for their next tread life. Such a sorting would allow the fleet and retreader to make better decisions regarding the handling and utilization of casings recovered from 6x4, 4x2, and trailer applications. Casings that are judged to be more “highly fatigued” should be retreaded in one of two ways:

1. A low rolling resistance/low heat retread rubber in rib and drive (consult your retread supplier).
2. A shallow retread (no more than 15/32”). These retreads will reduce the operating temperature in the crown of the tire.

Determining which tires are “highly fatigued” requires a working knowledge of each fleet’s individual operation. The following guidelines can be used:

1. Two or more repairs on the casing.
2. Heavy sidewall abrasion.

* Exceeding the legal speed limit is neither recommended nor endorsed.
TREAD SELECTION MATRIX

In view of the above, it would seem best to adopt the casing management pattern below for tires in highway service:

<table>
<thead>
<tr>
<th>Tire First Used On</th>
<th>Position of First Retread Use</th>
<th>Position of Subsequent Retread Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steer</td>
<td>Drive or Trailer</td>
<td>Trailer</td>
</tr>
<tr>
<td>Drive</td>
<td>Trailer</td>
<td>Trailer</td>
</tr>
<tr>
<td>Trailer</td>
<td>Drive or Trailer</td>
<td>Trailer</td>
</tr>
</tbody>
</table>

RETREAD RECOMMENDATIONS

1. Follow the retread manufacturer’s recommendations.
2. Use the preferred tread size.
3. Buff to the correct crown radius.
4. Use pilot skives to measure undertread; 2/32” to 3/32” is all that should remain when buffing is complete.

PREVIOUS SERVICE LIFE

In light of all these conditions and recommendations, the purchaser of casings for retreading should proceed with caution. Use the tread selection matrix when previous service life is unknown.

COLD CLIMATE PRESSURE CORRECTION DATA

Because the air pressure inside a tire will decrease when the vehicle is taken from a warm environment to a cold one, some adjustments may be necessary when adjusting the tire pressures of a vehicle to be operated in very cold temperatures.

These adjustments are only necessary if the pressures are verified and adjusted inside a heated garage with an air supply that is also at the higher room temperature. (No adjustment necessary if done outside.)

In extreme cases, the following table should be used to ensure that the operating pressure and deflection of tires are adequate at the outside ambient temperature.

Using the load and pressure charts below, determine the appropriate “Recommended Pressure” required for the axle load. Then find the same pressure down the left column of the table to the right. Going across to the relevant outside ambient temperature you will find the corrected inflation pressure to be used.

For example:

- A log truck in Alaska has a front axle loaded weight of 12,000 lbs.
- The truck is equipped with 11R24.5 MICHELIN® XZY® 3 tires.
- The recommended pressure for this fitment is 105.
- The truck is parked overnight in a heated garage.
- The outside high forecasted for today is -20°F.
- The tire pressures are checked and adjusted prior to leaving the heated garage.

According the chart below, the tires should be adjusted to 128.

Adjusted Inflation Pressure (psi) when inflating indoors at 65°F [18°C]

<table>
<thead>
<tr>
<th>Recommended Pressure (psi)</th>
<th>F° 50°</th>
<th>40°</th>
<th>30°</th>
<th>20°</th>
<th>10°</th>
<th>0°</th>
<th>-10°</th>
<th>-20°</th>
<th>-30°</th>
<th>-40°</th>
<th>-50°</th>
</tr>
</thead>
<tbody>
<tr>
<td>C° 10°</td>
<td>4°</td>
<td>-1°</td>
<td>-7°</td>
<td>-12°</td>
<td>-18°</td>
<td>-23°</td>
<td>-29°</td>
<td>-34°</td>
<td>-40°</td>
<td>-46°</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>83</td>
<td>86</td>
<td>88</td>
<td>90</td>
<td>92</td>
<td>95</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>80</td>
<td>83</td>
<td>85</td>
<td>87</td>
<td>89</td>
<td>91</td>
<td>93</td>
<td>96</td>
<td>98</td>
<td>101</td>
<td>104</td>
<td>107</td>
</tr>
<tr>
<td>85</td>
<td>88</td>
<td>90</td>
<td>92</td>
<td>94</td>
<td>97</td>
<td>99</td>
<td>102</td>
<td>104</td>
<td>107</td>
<td>110</td>
<td>113</td>
</tr>
<tr>
<td>90</td>
<td>93</td>
<td>95</td>
<td>98</td>
<td>100</td>
<td>102</td>
<td>105</td>
<td>108</td>
<td>110</td>
<td>113</td>
<td>116</td>
<td>119</td>
</tr>
<tr>
<td>95</td>
<td>98</td>
<td>101</td>
<td>103</td>
<td>105</td>
<td>108</td>
<td>111</td>
<td>113</td>
<td>116</td>
<td>119</td>
<td>123</td>
<td>126</td>
</tr>
<tr>
<td>100</td>
<td>103</td>
<td>106</td>
<td>108</td>
<td>111</td>
<td>113</td>
<td>116</td>
<td>119</td>
<td>122</td>
<td>125</td>
<td>129</td>
<td>132</td>
</tr>
<tr>
<td>105</td>
<td>109</td>
<td>111</td>
<td>114</td>
<td>116</td>
<td>119</td>
<td>122</td>
<td>125</td>
<td>128</td>
<td>132</td>
<td>135</td>
<td>139</td>
</tr>
<tr>
<td>110</td>
<td>114</td>
<td>116</td>
<td>119</td>
<td>122</td>
<td>125</td>
<td>128</td>
<td>131</td>
<td>134</td>
<td>138</td>
<td>141</td>
<td>145</td>
</tr>
<tr>
<td>115</td>
<td>119</td>
<td>122</td>
<td>124</td>
<td>127</td>
<td>130</td>
<td>133</td>
<td>137</td>
<td>140</td>
<td>144</td>
<td>148</td>
<td>151</td>
</tr>
<tr>
<td>120</td>
<td>124</td>
<td>127</td>
<td>130</td>
<td>133</td>
<td>136</td>
<td>139</td>
<td>143</td>
<td>146</td>
<td>150</td>
<td>154</td>
<td>158</td>
</tr>
<tr>
<td>125</td>
<td>129</td>
<td>132</td>
<td>135</td>
<td>138</td>
<td>141</td>
<td>145</td>
<td>148</td>
<td>152</td>
<td>156</td>
<td>160</td>
<td>164</td>
</tr>
<tr>
<td>130</td>
<td>134</td>
<td>137</td>
<td>140</td>
<td>144</td>
<td>147</td>
<td>150</td>
<td>154</td>
<td>158</td>
<td>162</td>
<td>166</td>
<td>171</td>
</tr>
</tbody>
</table>

* Never exceed the rim manufacturer’s maximum air pressure limitation.
COST ANALYSIS

Each fleet operation is different, but there is one consistent goal and that is to achieve the best possible operating cost. This section is designed to provide a guide to determining a Cost Per Mile (CPM).

The simplest CPM is found by dividing the price of the tire and any retread by the total mileage. While this is an easy calculation, it is very misleading by ignoring many of the added benefits of the tire or the transfer of residual casing value from one life to another.

Determining CPM by wheel position could provide an important gauge for performance since each wheel position is a very special case with unique operating requirements. Here are some of the key elements that need to be considered in any analysis:

1. Total mileage (considers new and retread mileage for steer, drive, and trailer)
2. Residual casing values or casing resale value
3. Requirements of the specific wheel position (steer, drive, and trailer)
4. Repairability (dollars spent on additional mounts and dismounts, repair time and labor)
5. Retreadability (additional casing purchases)
6. Fuel efficiency (see section below)

SIX CRITICAL FUNDAMENTALS THAT COST MONEY

LOW AIR PRESSURE

This is the number one (along with improper alignment) tire maintenance issue in the industry. The goal is to maintain a recommended fleet target pressure based on the application and vary no more than ± 10 psi. Outside of this range, casing fatigue and irregular wear could cost in the range of $15 to $30 on a $300 tire.

VALVE CAPS

Slow air loss is the primary result of missing or faulty valve caps. Properly installed and maintained valve caps function as a secondary air seal and means to keep debris away from the valve core. Always install a new metal valve cap containing a rubber or plastic seal. Consider a flow-through type system to improve your maintenance program. The resulting annual expense from missing valve caps/air loss may result in $5 to $15 per occurrence.

DUAL MISMATCHED AIR PRESSURE

The goal is to maintain tires in dual with equal pressure and within the target range of ± 10 psi. Mismatched pressures can cause a permanent irregular wear pattern to develop and, within just a matter of weeks, can potentially be a cause of early tire removal. The matched tire will also be affected by this difference. Based on a loss of 5 to 20% of tread life, a $30 cost may be associated with this situation.

DUAL MISMATCHED HEIGHT

The best method of avoiding damage due to having tires of unequal circumferences is to inspect and match tires so that within the dual position, the average diameter difference is no more than 1/4 inch. Additionally, tires on axles and axle ends should fall within this guideline to avoid potential damage to the vehicle transmission. Based on a loss of 5 to 20% of treadlife, a $30 cost may be associated with this situation.

OVERINFLATION

Again, the goal is to maintain a recommended fleet target pressure based on the application and vary no more than ± 10 psi. Overinflated tires are more likely to be damaged by impact breaks and accelerated wear costing from 7 to 15% of life. A cost factor in a range of $15 to $30 could be associated with overinflation.

IRREGULAR WEAR

Proper air pressure maintenance and a total vehicle alignment program can eliminate most irregular wear. An occurrence of irregular wear, on average, is associated with a 12% loss of tread life, or $15 to $36. It is also not uncommon for irregular wear to cause a loss of up to 50% of usable tread, resulting in a much higher cost.

STEER AXLE

- MICHELIN® XZA3® New Tire Price (estimated) $350.00
- Residual Casing Value (estimated) - $60.00
- Total Miles (estimated) ÷ 120,000
- CPM = $ 0.00241 per mile

DRIVE AXLE

- MICHELIN® XDA3® New Tire Price (estimated) $350.00
- Residual Casing Value (estimated) - $60.00
- Total Miles (estimated) ÷ 250,000
- CPM = $ 0.00116 per mile

YOUR OPERATION

- New Tire Price $ ___________________
- Residual Casing Value - ___________________
- Total Miles ÷ ___________________
- CPM = ___________________

COST ANALYSIS

SIX CRITICAL FUNDAMENTALS THAT COST MONEY

- Total expected casing life
- Labor (scheduled and unscheduled)
- Road call (by shop personnel as well as Emergency calls)
- Disposal fees
- Liability Insurance

An estimate of the CPM obtained by different tires in different wheel positions is shown in the examples below.
Tires are a major component in the operating efficiency of the vehicle as a result of their rolling resistance. Rolling resistance is defined as how much effort it takes to roll a tire with a given load and air pressure. This tire rolling resistance is approximately 1/3 of the total vehicle resistance in 6x4 and 6x2 applications and as such, a change of 3% in rolling resistance equals a 1% change in fuel consumption. Wind resistance and drive line friction account for the balance of the resistance.

The MICHELIN® tires with Advanced Technology™ compound are built to maximize energy conservation. And the MICHELIN® X One® tire in drive and trailer positions can even provide an increase over these Advanced Technology tires.

A change in rubber compound can provide a large reduction in rolling resistance, although it is unacceptable to sacrifice durability and wet traction to achieve this result. The Advanced Technology compound is a sophisticated mix of tread design, complex rubber chemistry, and advanced casing design all used while maintaining mileage, wet traction, and durability.

As fuel costs continue to increase, fuel expenditures become even more critical than tire expenditures. The ratio of fuel to tire costs will range from 8:1 to 15:1 based on the fleet operation in regional and long haul applications.

To calculate potential fuel savings:

A. Cost of Fuel/Gal. $ _________________________
B. Annual Miles _________________________
C. MPG of the Vehicle ____________________ MPG
D. Total Estimated Fuel
 \[B \div C = \text{gallon} \] _________________
E. % Fuel Savings % _________________________
F. Estimated Fuel Savings
 \[(E \times D) = \text{gallon} \] _________________
 \[(F \times A) = $ \] _________________

For a more in-depth calculation, consideration should be given to looking at the rolling resistance factors for the specific tires you are considering and ask for the assistance of your MICHELIN Representative in determining the savings. The next step would be to conduct an SAE (Society of Automotive Engineers) Type J1376 fuel test and eliminate all the variables. Again, refer to your MICHELIN Representative for assistance.

The SAE Type J1376 Fuel Test is a standard test procedure for evaluating the relative fuel economy of given vehicles. Test cycles are conducted over 2 to 3 days on a circular route of 30 miles, utilizing two vehicles of similar design and load with fuel supplied by portable tanks. While using the same steer, drive, and trailer tires, a 2% ratio of both circuit time and of fuel weight consumed must be established. All other variables will have been minimized by the constraints of the test procedures. Once the baseline has been established, the test tires will be placed on the test vehicle, and the difference in fuel consumption can be determined based on the completion of 3-5 runs falling within the 2% ratio.
Wheel Type

Refer to MICHELIN® X One® Truck Tire Service Manual (MWL43101) for proper fasteners and procedures for MICHELIN® X One tire fitments.

Before servicing any truck wheel, it is essential to know the type of mounting system you will be working on. Three basic types of mounting systems are commonly used on commercial vehicles in North America. See *TMC RP 217B, Attaching Hardware for Disc Wheels*, for more detailed information on fasteners.

Hub Piloted Disc Wheels

Hub Piloted Disc Wheels are designed to center on the hub at the center hole or bore of the wheel. The wheel center hole locates the wheel on pilots built into the hub. Hub piloted wheels are used with two-piece flange nuts, which contact the disc face around the bolt hole. Only one nut on each stud is used to fasten single or dual wheels to a vehicle. All stud and nut threads are right hand. Hub piloted wheels have straight through bolt holes with no ball seat, which provides a visual way of identifying them.

![Hub Piloted Disc Wheel Diagram](image)

Stud Piloted Disc Wheels

Stud Piloted Disc Wheels are designed to be centered by the nuts on the studs. The seating action of the ball seat nuts in the ball seat bolt holes centers the wheels. Stud piloted dual wheels require inner and outer cap nuts. Fasteners with left hand threads are used on the left side of the vehicle and those with right hand threads are used on the right side of the vehicle.

![Stud Piloted Disc Wheel Diagram](image)

Cast Spoke Wheels

Cast Spoke Wheels consist of a metal casting that includes the hub with spokes, either 3, 5, or 6. Demountable rims are attached to this axle component with clamps. Each cast spoke wheel requires specific clamps designed for that wheel. The cast spoke wheel with brake drum and clamps for rear axles requires a spacer band to hold the two rims apart and provides for proper dual spacing. Proper torque is 210-260 lb/ft.

![Cast Spoke Wheel Diagram](image)
Warning: Correct components must be used. It is important to note that some hub piloted and stud piloted wheels may have the same bolt circle pattern. Therefore, they could mistakenly be interchanged. Each mounting system requires its correct mating parts. It is important that the proper components are used for each type of mounting and that the wheels are fitted to the proper hubs.

If hub piloted wheel components (hubs, wheels, fasteners) are mixed with stud piloted wheel components, loss of torque, broken studs, cracked wheels, and possible wheel loss can occur since these parts are not designed to work together.

Mixing hub piloted and stud piloted wheels will not allow the inner cap nut to fit into the inner wheel and will result in the inner cap nut interfering with the outer wheel. (Figure 1)

SPECIAL CONSIDERATIONS FOR ALUMINUM WHEELS

It is also important to note that the disc thickness of aluminum wheels is usually much thicker than steel wheels, and stud length must be checked when changing from steel wheels to aluminum wheels. Aluminum wheel disc thickness ranges from 3/4" to 1-1/8". This is approximately double the thickness of steel disc wheels. Because of this increase in disc thickness, special consideration must be given to aluminum wheel attaching hardware. Wheel stud lengths are specifically designed to suit varying disc wheel mounting systems, brake drum mounting face thickness, and disc wheel material types. Failure to use the correct length studs may lead to insufficient clamp load of the disc wheels.

The minimum length for dual aluminum wheels is 1.06 inches or 27 mm as measured from the brake drum face when mounted on the hub. The pilot must engage 1/2 of the thickness of the aluminum wheel. Refer to *TMC RP 217B, Attaching Hardware for Disc Wheels*. Hub Bore and 15 degree bead seat measuring tools are available from the wheel manufacturers. (Figure 3)

An out-of-service condition exists if the area between the bolt hole ball seats is worn away to less than 1/16th inch (the approximate thickness of a dime). If this is the case, the wheel should be scrapped. (Figure 4)
DISC WHEEL INSTALLATION PROCEDURE—RECOMMENDED MOUNTING TORQUE FOR DISC WHEELS

<table>
<thead>
<tr>
<th>Mounting Type</th>
<th>Nut Tread</th>
<th>Torque Level Ft-Lb (Oiled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hub piloted with flange nut</td>
<td>11/16"–16</td>
<td>300-400</td>
</tr>
<tr>
<td></td>
<td>M20 x 1.5</td>
<td>280-330</td>
</tr>
<tr>
<td></td>
<td>M22 x 1.5</td>
<td>450-500</td>
</tr>
<tr>
<td>Ft-Lb (Dry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stud piloted, double cap nut</td>
<td>3/4"–16</td>
<td>450-500</td>
</tr>
<tr>
<td>Standard type (7/8" radius)</td>
<td>1-1/8"–16</td>
<td>450-500</td>
</tr>
<tr>
<td>Stud piloted, double cap nut</td>
<td>15/16"–12</td>
<td>750-900</td>
</tr>
<tr>
<td>Heavy duty type (1-3/16" radius)</td>
<td>1-1/8"–16</td>
<td>750-900</td>
</tr>
<tr>
<td></td>
<td>1-15/16"–12</td>
<td>750-900</td>
</tr>
</tbody>
</table>

Notes:
1. If using specialty fasteners, consult the manufacturer for recommended torque levels.
2. Tightening wheel nuts to their specified torque is extremely important. Under-tightening, which results in loose wheels, can damage wheels, studs, and hubs and can result in wheel loss. Over-tightening can damage studs, nuts, and wheels and result in loose wheels as well.
3. Regardless of the torque method used, all torque wrenches, air wrenches and any other tools should be calibrated periodically to ensure the proper torque is applied.

Reprinted with permission from TMC RP 222B, User’s Guide to Wheels and Rims, published by the Technology & Maintenance Council (TMC) of the American Trucking Associations, 2200 Mill Road, Alexandria, VA 22314 (703) 838-1776.
HEAVY & MEDIUM TRUCK AND TRAILER
TORQUE SPECIFICATIONS
FOR BOTH STEEL AND ALUMINUM WHEELS

STUD PILOTED WHEELS

10 Stud

6 Stud

DEMOUNTABLE RIMS

3 Spoke

5 Spoke

6 Spoke

RECOMMENDED TORQUE - DRY:

3/4 - 16 THREAD: 400 - 500 FT. LBS.
1 1/8 - 18 THREAD: 450 - 550 FT. LBS.
15/16 - 12 THREAD: 750 - 900 FT. LBS.
1 5/16 - 12 THREAD: 750 - 900 FT. LBS.

Left-hand threads are used on the left side of the vehicle. Right-hand threads are used on the right side of the vehicle.

INNER CAP NUTS – Tighten Cap Nuts to 50 ft. lb. using sequence shown. Then tighten Cap Nuts to recommended torque.

OUTER CAP NUTS – Tighten Cap Nuts to 50 ft. lb. using sequence shown. Then tighten Cap Nuts to recommended torque.

NOTE: In all applications where an Aluminum Inner Wheel is to be installed, a special Inner Cap Nut must be substituted for the Standard Inner Cap Nut.

Dual Assembly

RECOMMENDED TORQUE - DRY:

3/4 - 10 Thread: 200 - 260 FT. LBS.

REAR HEEL TYPE CLAMP - Gap permissible but not required – if gap exceeds 1/4" or if clamp bottoms out before reaching 80% of recommended torque, check to ensure that proper clamps and spacer are being used.

REAR HEEL-LESS CLAMP - Gap is required. Maximum 3/8" to 1/2".

Heel of clamp does not touch wheel.

FRONT HEEL TYPE CLAMP - Gap is not permitted. Clamp must bottom against spoke.

Dual Assembly

RECHECK TORQUE AFTER FIRST 50 TO 100 MILES OF SERVICE.

After a wheel has been installed, recheck the torque level between 50 and 100 miles of operation and retighten if necessary to the recommended torque using the proper sequence. (For stud mount dual applications loosen the outer cap nut before retorquing the inner cap nut). It is recommended that a torque check be made as part of a vehicle’s scheduled maintenance program or at 10,000 mile intervals whichever comes first. Individual fleet experience may dictate shorter intervals or longer intervals.

NOTE: These instructions are not complete. For more detailed information about wheel installation and maintenance, see manufacturers manual, CSIA’s Wheel and Rim Manual, or User’s Guide to Wheels and Rims by the Maintenance Council.

WRIS would like to acknowledge and thank the following companies for their support and assistance in development of this safety information: ACCURIDE CORPORATION, ALCOA WHEEL PRODUCTS INTERNATIONAL, HAYES LEMMERZ INTERNATIONAL.

Use with permission from WRIS - Wheel & Rim Institute of Safety, Inc.
MOUNTING PROCEDURES FOR 16.00R20 AND 24R21 MICHELIN® XL™ OR XZL™ TIRES

Correct procedure for mounting multi-piece wheels for tubeless truck tires includes proper mounting and correct air pressure.

Three-piece wheels consist of rim base, tapered bead seat, and locking ring. Mounting tools include: large bore valve, o-ring seal, brush or clean cloth with lubricant, small pallet of wooden blocks, air hose with a chuck or large bore valve, and miscellaneous tools.

The first step in mounting is to properly position the wheel base by placing the wheel on the small pallet or blocks to raise it off the floor, facilitating the lock ring installation. Note that the wheel is placed on the support with the fixed flange side down. Using the large bore valve, lightly lubricate the rubber grommet on the valve base; insert and secure with the hex nut of both sides.

Always use a large bore valve and not a standard truck valve since the larger diameter will permit better air flow and better bead seating.

WHEEL LUBRICATION

With a clean cloth or brush, lightly lubricate the rim base completely except for the two upper grooves. Lubrication in these grooves can cause the o-ring to be rolled out of the groove by the tapered bead seat when inflating the assembly. It is important to use a heavy lubricant such as MICHELIN Bib Grease or Murphy’s. Heavy lubricants do not dry as quickly, thus allowing more time to seat the beads during inflation.

LUBRICATION OF THE BEAD

Using a brush or clean cloth, lubricate the inside and outside of each tire bead area. This procedure plus the rim lubrication will allow the tapered bead seat ring to be installed more easily and allow the tire beads to seat properly during inflation.

TIRE PLACEMENT ON THE WHEEL

Place the tire on the wheel base. This can be done manually or by fork lift truck for easier handling. Exercise caution when sliding the forks below the sidewalls of the tires since an impact by the forks can damage the casing cords. Lifting the tire by the beads can damage or permanently distort the beads and should be avoided.

TAPERED BEAD SEAT RING

The bead seat ring should be lubricated on both sides before placing it on the wheel base. This allows it to slide between the tire and wheel base more easily and later over the wheel base during inflation. Lubricating the bead seating surface facilitates concentric seating of the beads during inflation.

O-RING SEAL

The most important part of tubeless mounting on multi-piece wheels is the o-ring seal under the bead seat ring. It is imperative that the correct O-ring be used and properly installed. Check O-ring length and cross section diameter for correct fit. The MICHELIN® O-ring seal reference number is 1506 for the 24R21, which is designated OR 6.6-21 for the 21-inch inside diameter. The 16.00R20 uses O-ring reference number 1681, designated OR 6.6-20 for the 20-inch or the corner ring, reference number 1443, designated A20-TYRAN. The corner ring has a slightly different mounting procedure – see wheel manufacturer for proper procedures. Some commercially available O-rings are too long. If too long, it will push out of the groove breaking the seal and the tire will loose air. Do not lubricate the O-ring prior to installation on the wheel. The lubricant tends to push the O-ring out of the groove breaking the seal. Make sure both the O-ring and the groove are free of debris. Place the O-ring in the bottom groove; it should fit tightly but not be excessively stretched.

LUBRICATION OF THE O-RING

The outer surface of the O-ring should be lightly, but well lubricated to allow the tapered bead seat to slide easily over the seal during inflation. Remember an incorrect O-ring or improper lubrication can force or push the O-ring out of the slot upon inflation causing air loss. Snap the lock ring in the upper rim groove. Check that the ring is fully seated in the groove.

INFLATION

Place the assembly in the horizontal (preferred) or vertical (if well lubricated) position for inflation in the restraining device and remove the valve core. This will allow the beads to slide more easily into position. Inflate to 80 psi for complete tire bead seating. Install the valve core and then adjust air pressure to that recommended for the load and condition.

Remember the keys for good mounting are:
1. Correct size, type, and compatibility of components
2. Proper lubrication and mounting procedures
3. 80 psi initial inflation pressure for bead seating, followed by adjustment to recommended pressure.

Adherence to these simple guidelines will ensure maximized performance and minimized downtime due to tire mismount.

If you are having difficulty in mounting or cannot get the assembly to inflate or hold air, an incorrect component or incorrect inflation is probably the cause.
MEASURED TIRE REVOLUTIONS PER MILE

At Michelin, Tire Revolutions Per Mile (Tire Revs./Mile) are officially determined using the SAE (Society of Automotive Engineers) Recommended Practice J1025. The test tires are placed as singles on the drive axle of the test vehicle and loaded to the maximum dual load rating of the tire and set to the corresponding pressure. The vehicle is then driven over a straight 2-mile section at 45 mph while the number of revolutions are counted. (Since speed minimally affects the results for radial tires, other speeds are allowed.) Averaging four runs that are within 1% of each other then derives the Tire Revs./Mile measurement.

Afterwards, the results are double-checked using shorter distances that are more easily obtained. In addition to these, the test tire is compared to a known baseline tire on a road wheel. This latter method is very accurate and very repeatable when using a similar baseline tire with a known Tire Revs./Mile.

The SAE procedure recognizes that within the test method itself there will be some variation. In fact, there are other factors that cause variation on Tire Revs./Miles among similar tires. Be aware that just because similar tires have the same overall diameter this does not necessarily mean that they will have the same Tire Revs./Mile. The SAE procedure determines the Tire Revs./Mile to within ±1.5%.

Some factors, which cause variation among tires, are:

- **Load and Pressure** – A difference in Load/Pressure could alter the Tire Revs./Mile measurement by as much as 1.5%. If pressure is constant, going from an empty vehicle to a fully loaded vehicle can change the Tire Revs./Mile by 1 to 1.5%.

- **Treadwear** – The Tire Revs./Mile varies from a new tire to a fully worn tire. This can affect Tire Revs./Mile by as much as 3% from the rated Tire Revs./Mile.

- **Tread Geometry** – The height and stiffness of the blocks and the shape of the tread pattern can affect Tire Revs./Mile.

- **Torque** – The presence of driving and braking torque can affect the Tire Revs./Mile.

- **Type and Condition of Pavement** – Asphalt vs. concrete, wet vs. dry can create difference in Tire Revs./Mile.

CALCULATED TIRE REVOLUTIONS PER MILE

Michelin Equation:

\[
\text{Tire Revs./Mile} = \frac{20,168}{(O.D. - .8d)}
\]

- \(O.D.\) = Overall Diameter
- \(d\) = Correction for deflection
 \(d = (O.D./2) - \text{SLR}\)
- \(\text{SLR}\) = Static Loaded Radius
 (Ref. Data Book)

Example: 275/80R22.5 MICHELIN® XDA® ENERGY

New Tire

- \(O.D.\) = 40.5
- \(\text{SLR}\) = 18.8
- \(d\) = \((40.5/2) - 18.8\)
- \(d\) = 1.45

\[
\text{Tire Revs./Mile} = \frac{20,168}{(40.5 - (.8 x 1.45))} = \frac{20,168}{(40.5 - 1.16)} = \frac{20,168}{39.34} \text{ Tire Revs./Mile} = 512.6 \text{ (Calculated)}
\]

(Ref. Data Book)

At 50% Worn

- \(O.D.\) = 40.1
- \(\text{SLR}\) = 18.6 (13/32nd used is approximately a 0.2 inch reduction of SLR)
 \(d\) = \((40.1/2) - 18.6\)
 \(d\) = 1.45

\[
\text{Tire Revs./Mile} = \frac{20,168}{(40.1 - (.8 x 1.45))} = \frac{20,168}{(40.1 - 1.16)} = \frac{20,168}{38.94} \text{ Tire Revs./Mile} = 508 \text{ (Calculated)}
\]
OUT-OF-SERVICE CONDITIONS

DESCRIPTION

Code Key 21: New & Retread Tire Out-of-Service Conditions was developed for tire manufacturers as a means of coding out-of-service conditions as determined by manufacturer/laboratory failure analysis. It is not meant to replace related codes identified for use by technicians in Code Key 18: Technician Failure Code, or Code Key 82: Operator Vehicle/Equipment Condition Report. Code Key 21 has two codes per condition, a two-character alpha code or an alternative four-digit numeric code. Code Key 21 was introduced with the release of VMRS 2000™ Version 1.05.

NOTE: In release of VMRS that preceded VMRS 2000™, Code Key 21 was used redundantly to denote a vehicle group/system. The information once contained in Code Key 21 was assigned to VMRS 2000™ Code Key 31 in 1997.

<table>
<thead>
<tr>
<th>Bead Area</th>
<th>Code (Alpha)</th>
<th>Code (Numeric)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW</td>
<td>1101</td>
<td>Bead Damage from Rim Flange Wear</td>
<td></td>
</tr>
<tr>
<td>BO</td>
<td>1102</td>
<td>Bead Damage Due to Overload</td>
<td></td>
</tr>
<tr>
<td>TB</td>
<td>1103</td>
<td>Torn Beads</td>
<td></td>
</tr>
<tr>
<td>KB</td>
<td>1104</td>
<td>Kinked/Distorted Beads</td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td>1105</td>
<td>Bead Deformation</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>1106</td>
<td>Burned Beads</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>1107</td>
<td>Bead Damage from Curbing</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>1108</td>
<td>Reinforce/Chaffer Separation</td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>1109</td>
<td>Lower Sidewall/Bead Area Flow Crack</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sidewall Area</th>
<th>Code (Alpha)</th>
<th>Code (Numeric)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>1201</td>
<td>Spread/Damaged Cord</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>1202</td>
<td>Sidewall Separation</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>1203</td>
<td>Sidewall Separation Damage Induced</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>1204</td>
<td>Sidewall Separation Due to Tread Puncture</td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>1205</td>
<td>Sidewall Separation Due to Bead Damage</td>
<td></td>
</tr>
<tr>
<td>BM</td>
<td>1206</td>
<td>Branding Damage</td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>1207</td>
<td>Cuts and Snags</td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td>1208</td>
<td>Damage from Object Lodged Between Duals</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>1209</td>
<td>Sidewall Abrasion/Scuff Damage</td>
<td></td>
</tr>
<tr>
<td>WE</td>
<td>1210</td>
<td>Weathering/Ozone Cracking</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>1211</td>
<td>Radial Split</td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>1212</td>
<td>Sidewall Bumps (Blisters)</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>1213</td>
<td>Diagonal Cracking</td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>1214</td>
<td>Heavy Sidewall Splice</td>
<td></td>
</tr>
<tr>
<td>OZ</td>
<td>1215</td>
<td>Open Sidewall Splice</td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td>1216</td>
<td>Sidewall Penetration</td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>1217</td>
<td>Crack at Edge of Retread Wing</td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>1218</td>
<td>Cracking Due to Excessive Sidewall Buff</td>
<td></td>
</tr>
<tr>
<td>ZP</td>
<td>1219</td>
<td>Circumferential Fatigue Rupture (Zipper)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crown Area</th>
<th>Code (Alpha)</th>
<th>Code (Numeric)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td>1301</td>
<td>Brake Skid Damage</td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>1302</td>
<td>Wild Wire</td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>1303</td>
<td>Delamination</td>
<td></td>
</tr>
<tr>
<td>LB</td>
<td>1304</td>
<td>Lug Base Cracking</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>1305</td>
<td>Chipping/Flaking/Chunking Tread</td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>1306</td>
<td>Stone Drilling</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>1307</td>
<td>Regrooving Damage</td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>1308</td>
<td>Dynamometer Type Damage</td>
<td></td>
</tr>
<tr>
<td>EX</td>
<td>1309</td>
<td>Excessive Wear</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>1310</td>
<td>Rib Tearing</td>
<td></td>
</tr>
<tr>
<td>Code (Alpha)</td>
<td>Code (Numeric)</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Crown Area (continues)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG</td>
<td>1311</td>
<td>Defense Groove Tearing</td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>1312</td>
<td>Groove Cracking</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>1313</td>
<td>Spin Damage</td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>1314</td>
<td>Electrical Discharge</td>
<td></td>
</tr>
<tr>
<td>PO</td>
<td>1315</td>
<td>Tread Surface Porosity</td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>1316</td>
<td>Tread Non-fill</td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>1317</td>
<td>Belt Lift/Separation</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>1318</td>
<td>Belt Separation - Repair Related</td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>1319</td>
<td>Tread Lift/Separation</td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>1320</td>
<td>Retread Separation</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>1321</td>
<td>Retread Separation - Repair Related</td>
<td></td>
</tr>
<tr>
<td>TE</td>
<td>1322</td>
<td>Retread Edge Lifting</td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>1323</td>
<td>Bond Line Porosity</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>1324</td>
<td>Missed Puncture</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>1325</td>
<td>Skive Failure</td>
<td></td>
</tr>
<tr>
<td>WL</td>
<td>1326</td>
<td>Wing Lift</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>1327</td>
<td>Misaligned Tread</td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>1328</td>
<td>Improper Tread Width</td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>1329</td>
<td>Tread Chunking at Splice</td>
<td></td>
</tr>
<tr>
<td>OT</td>
<td>1330</td>
<td>Open Tread Splice</td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>1331</td>
<td>Short Tread Splice</td>
<td></td>
</tr>
<tr>
<td>BT</td>
<td>1332</td>
<td>Buckled Tread</td>
<td></td>
</tr>
<tr>
<td>Tire Interior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>1401</td>
<td>Inner Liner Split at Puncture</td>
<td></td>
</tr>
<tr>
<td>FO</td>
<td>1402</td>
<td>Foreign Object Inner Liner Damage</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>1403</td>
<td>Pinch Shock</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>1401</td>
<td>Tearing Mount/Demount Damage</td>
<td></td>
</tr>
<tr>
<td>OL</td>
<td>1405</td>
<td>Open Inner Liner Splice</td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td>1406</td>
<td>Inner Liner Bubbles/Blisters/Separations</td>
<td></td>
</tr>
<tr>
<td>LC</td>
<td>1407</td>
<td>Inner Liner Cracking</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>1408</td>
<td>Pulled/Loose Cords</td>
<td></td>
</tr>
<tr>
<td>TI</td>
<td>1409</td>
<td>Thin Inner Liner</td>
<td></td>
</tr>
<tr>
<td>PG</td>
<td>1410</td>
<td>Ply Gap</td>
<td></td>
</tr>
<tr>
<td>Improper/Failed Repairs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>1501</td>
<td>Improper Bead Repair</td>
<td></td>
</tr>
<tr>
<td>OW</td>
<td>1502</td>
<td>On-the-Wheel Repair</td>
<td></td>
</tr>
<tr>
<td>BZ</td>
<td>1503</td>
<td>Improper Spot Repair</td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>1504</td>
<td>Repair Related Bulge</td>
<td></td>
</tr>
<tr>
<td>WR</td>
<td>1505</td>
<td>Spot Repair Should Have Been a Section</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>1506</td>
<td>Improper Nail Hole Repair</td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>1507</td>
<td>Improperly Aligned Repair</td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>1508</td>
<td>Bridged Repair</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>1509</td>
<td>Improper Section Repair - Damage Not Removed</td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>1510</td>
<td>Bias Repair in Radial Tire</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>1511</td>
<td>Improper Repair Unit Placement</td>
<td></td>
</tr>
<tr>
<td>UN</td>
<td>1512</td>
<td>Unfilled Nail Hole Repair</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>1513</td>
<td>Repair Unit Cracking at Reinforcement</td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>1514</td>
<td>Failed Inner Liner Repair</td>
<td></td>
</tr>
<tr>
<td>RU</td>
<td>1515</td>
<td>Repair Failure from Underinflation</td>
<td></td>
</tr>
</tbody>
</table>
Rotating assembly runout can influence vehicle vibration and contribute to irregular tire wear. Following these procedures for verifying the concentricity of the guide rib area as well as ensuring that both radial and lateral runout measurements are the lowest possible will aid in reducing any tire/wheel/hub assembly contribution.

Tools needed:
- Tire runout gauge (or dial indicator)
- Air pressure gauge
- Tread depth gauge
- Feeler gauge
- Six inch metal ruler
- Tire marking crayon
- Jack and jack stands

The first step is to eliminate possible sources of the disturbance (operation conditions, alignment posture, driveline component balance and angles, frame and chassis concerns, fifth wheel placement, and possible excessive stacked tolerances). Find out as much as you can that may be related to the issue to aid in the initial diagnosis (maintenance file, test drive, driver interview).

Examine the assemblies for proper air pressure, proper mounting, verify balance if balanced, inspect for tire and or wheel/rim damage. Verify torque and proper component assembly on tube-type or multi-piece assemblies. Proper mounting procedure will reduce runout where it starts during the mounting process.

Jack up the front end of the vehicle so axle is unloaded and place jack stands for support. Inspect front end components, including wheel bearing and kingpin play, suspension and rear assemblies.

Use the tire runout gauge to check for both radial (top photo) and lateral runout (bottom photo) for the rotating assembly. Values over 0.060 inch will be a detectable cause of vibration in steer assemblies and on recreational vehicles. Current TMC (Technology & Maintenance Council) assembly tolerances are 0.095 inches, radial and lateral (See Balance and Runout, Page 42).

If the value is between 0.001" and 0.060", continue with procedures below. If the value is >0.060", remove and deflate the tire, break it loose from the rim, lubricate, rotate the tire 180 degrees, reinflate, and recheck runout.
Note: The bead seating surface of the tire and wheel do not match up as shown in previous illustration. This incorrect seating is the result of mismount. The TMC (Technology & Maintenance Council) specification is \(2/32\text{nds (0.062 inch)}\). If both wheel and tire are lubricated and initial air inflation is done with the tire flat, then \(1/32\text{nd inch or less variance around the tire should be obtainable.}\)

Check for this mismount condition with the 6 inch ruler, measuring in 4 locations around an unladen assembly.

Check for hub to wheel clearance on hub piloted assemblies with the feeler gauge. If the measured high spot lines up with the feeler gauge gap, rotate the assembly so the gap is at the top, loosen the lug nuts, and allow gravity to center the wheel on the hub. Hand tighten the top nut, tighten all nuts in the proper sequence, recheck for runout, and retorque.

Verification of radial (top photo) and lateral (bottom photo) wheel runout is another step to be considered. TMC tolerances are **0.070 inch** on tubeless steel disc wheels and **0.030 inch** on tubeless aluminum disc wheels.

PROCEDURE TO CHECK THE WHEEL FOR RADIAL AND LATERAL RUNOUT

- Mark two studs and the wheel with a crayon.
- Remove the tire/wheel assembly from the hub.
- Mark the tire and wheel at the valve stem.
- Dismount the tire from the wheel using proper procedures.
- Clean the wheel flange area with a wire brush. Check the wheel for any damage.
- Identify and mark the wheel to indicate where the radial and lateral high and low spots were found on the tire.
- Place the wheel back on the marked hub with the wheel matched to the marked studs. Use 3 lug nuts and properly torque.
- Measure radial and lateral runout on the inside and outside flange.
- See if the readings match up to the tire.
- Readings greater than 0.030" for aluminum wheels and 0.070" on steel wheels indicate high runout.
1910.177 SERVICING MULTI-PIECE AND SINGLE PIECE RIM/WHEELS

(a) Scope. (1) This section applies to the servicing of multi-piece and single piece rim/wheels used on large vehicles such as trucks, tractors, trailers, buses, and off-road machines. It does not apply to the servicing of rim/wheels used on automobiles, or on pickup trucks and vans utilizing automobile tires or truck tires designated “LT.”

(2) This section does not apply to employers and places of employment regulated under the Construction Safety Standards, 29 CFR* part 1926; the Agriculture Standards, 29 CFR part 1928; the Shipyard Standards, 29 CFR part 1915; or the Longshoring Standards, 29 CFR part 1918.

(3) All provisions of this section apply to the servicing of both single piece rim/wheels and multi-piece rim/wheels unless designated otherwise.

(b) Definitions. Barrier means a fence, wall, or other structure or object placed between a single piece rim/wheel and an employee during tire inflation, to contain the rim/wheel components in the event of the sudden release of the contained air of the single piece rim/wheel.

Charts means the U.S. Department of Labor, Occupational Safety and Health Administration publications entitled “Demounting and Mounting Procedures for Truck/Bus Tires” and “Multipiece Rim Matching Chart,” the National Highway Traffic Safety Administration (NHTSA) publications entitled “Demounting and Mounting Procedures Truck/Bus Tires” and “Multipiece Rim Matching Chart,” or any other poster which contains at least the same instructions, safety precautions, and other information contained in the charts that is applicable to the types of wheels being serviced.

Installing a rim/wheel means the transfer and attachment of an assembled rim/wheel onto a vehicle axle hub. Removing means the opposite of installing.

Mounting a tire means the assembly or putting together of the wheel and tire components to form a rim/wheel, including inflation. Demounting means the opposite of mounting.

Multi-piece rim/wheel means the assemblage of a multi-piece wheel with the tire tube and other components. Multi-piece wheel means a vehicle wheel consisting of two or more parts, one of which is a side or locking ring designed to hold the tire on the wheel by interlocking components when the tire is inflated.

Restraining device means an apparatus such as a cage, rack, assemblage of bars and other components that will constrain all rim/wheel components during an explosive separation of a multi-piece rim/wheel, or during the sudden release of the contained air of a single piece rim/wheel.

Rim manual means a publication containing instructions from the manufacturer or other qualified organization for correct mounting, demounting, maintenance, and safety precautions peculiar to the type of wheel being serviced.

Rim/wheel means an assemblage of tire, tube and liner (where appropriate), and wheel components.

Service or servicing means the mounting and demounting of rim/wheels and related activities such as inflating, deflating, installing, removing, and handling.

Service area means that part of an employer’s premises used for the servicing of rim/wheels or any other place where an employee services rim/wheels.

Single piece rim/wheel means the assemblage of single piece rim/wheel with the tire and other components.

Single piece wheel means a vehicle wheel consisting of one part, designed to hold the tire on the wheel when the tire is inflated.

Trajectory means any potential path or route that a rim/wheel component may travel during an explosive separation, or the sudden release of the pressurized air, or an area at which an airblast from a single piece rim/wheel may be released. The trajectory may deviate from paths which are perpendicular to the assembled position of the rim/wheel at the time of separation or explosion. Wheel means that portion of a rim/wheel which provides the method of attachment of the assembly to the axle of a vehicle and also provides the means to contain the inflated portion of the assembly (i.e., the tire and/or tube).

(c) Employee training. (1) The employer shall provide a program to train all employees who service rim/wheels in the hazards involved in servicing those rim/wheels and the safety procedures to be followed.

(i) The employer shall assure that no employee services any rim/wheel unless the employee has been trained and instructed in correct procedures of servicing the type of wheel being serviced, and in the safe operating procedures described in paragraphs (f) and (g) of this section.

(ii) Information to be used in the training program shall include, at a minimum, the applicable data contained in the charts (rim manuals), and the contents of this standard.

(iii) Where an employer knows or has reason to believe that any of his employees is unable to read and understand the charts or rim manual, the employer shall assure that the employee is instructed concerning the contents of the charts and rim manual in a manner.

*29 CFR – Title 29, Labor; Code of Federal Regulations
which the employee is able to understand.

(2) The employer shall assure that each employee demonstrates and maintains the ability to service rim/wheels safely, including performance of the following tasks:

(i) Demounting of tires (including deflation);
(ii) Inspection and identification of the rim/wheel components;
(iii) Mounting of tires (including inflation with a restraining device or other safeguard required by this section);
(iv) Use of the restraining device or barrier and other equipment required by this section;
(v) Handling of rim/wheels;
(vi) Inflation of the tire when a single piece rim/wheel is mounted on a vehicle;
(vii) An understanding of the necessity of standing outside the trajectory both during inflation of the tire and during inspection of the rim/wheel following inflation; and
(viii) Installation and removal of rim/wheels.

(3) The employer shall evaluate each employee's ability to perform these tasks and to service rim/wheels safely, and shall provide additional training as necessary to assure that each employee maintains his or her proficiency.

(d) Tire servicing equipment. (1) The employer shall furnish a restraining device for inflating tires on multi-piece wheels.

(2) The employer shall provide a restraining device or barrier for inflating tires on single piece wheels unless the rim/wheel will be bolted onto a vehicle during inflation.

(3) Restraining devices and barriers shall comply with the following requirements:

(i) Each restraining device or barrier shall have the capacity to withstand the maximum force that would be transferred to it during a rim/wheel separation occurring at 150 percent of the maximum tire specification pressure for the type of rim/wheel being serviced.

(ii) Restraining devices and barriers shall be capable of preventing the rim/wheel components from being thrown outside or beyond the device or barrier for any rim/wheel positioned within or behind the device;

(iii) Restraining devices and barriers shall be visually inspected prior to each day's use and after any separation of the rim/wheel components or sudden release of contained air. Any restraining device or barrier exhibiting damage such as the following defects shall be immediately removed from service:

(A) Cracks at welds;
(B) Cracked or broken components;
(C) Bent or sprung components caused by mishandling, abuse, tire explosion or rim/wheel separation;
(D) Pitting of components due to corrosion; or
(E) Other structural damage which would decrease its effectiveness.

(iv) Restraining devices or barriers removed from service shall not be returned to service until they are repaired and reinspected. Restraining devices or barriers requiring structural repair such as component replacement or rewelding shall not be returned to service until they are certified by either the manufacturer or a Registered Professional Engineer as meeting the strength requirements of paragraph (d)(3)(i) of this section.

(4) The employer shall furnish and assure that an air line assembly consisting of the following components be used for inflating tires:

(i) A clip-on chuck;
(ii) An in-line valve with a pressure gauge or a presettable regulator; and
(iii) A sufficient length of hose between the clip-on chuck and the in-line valve (if one is used) to allow the employee to stand outside the trajectory.

(5) Current charts or rim manuals containing instructions for the type of wheels being serviced shall be available in the service area.

(6) The employer shall furnish and assure that only tools recommended in the rim manual for the type of wheel being serviced are used to service rim/wheels.

(e) Wheel component acceptability. (1) Multi-piece wheel components shall not be interchanged except as provided in the charts or in the applicable rim manual.

(2) Multi-piece wheel components and single piece wheels shall be inspected prior to assembly. Any wheel or wheel component which is bent out of shape, pitted from corrosion, broken, or cracked shall not be used and shall be marked or tagged unserviceable and removed from the service area. Damaged or leaky valves shall be replaced.

(3) Rim flanges, rim gutters, rings, bead seating surfaces, and the bead areas of tires shall be free of any dirt, surface rust, scale or loose or flaked rubber build-up prior to mounting and inflation.

(4) The size (bead diameter and tire/wheel widths) and type of both the tire and the wheel shall be checked for compatibility prior to assembly of the rim/wheel.

(f) Safe operating procedure—multi-piece rim/wheels. The employer shall establish a safe operating procedure for servicing multi-piece rim/wheels and shall assure that employees are instructed in and follow that procedure. The procedure shall include at least the following elements:
(1) Tires shall be completely deflated before demounting by removal of the valve core.

(2) Tires shall be completely deflated by removing the valve core before a rim/wheel is removed from the axle in either of the following situations:
 (i) When the tire has been driven underinflated at 80% or less of its recommended pressure, or
 (ii) When there is obvious or suspected damage to the tire or wheel components.

(3) Rubber lubricant shall be applied to bead and rim mating surfaces during assembly of the wheel and inflation of the tire, unless the tire or wheel manufacturer recommends against it.

(4) If a tire on a vehicle is underinflated but has more than 80% of the recommended pressure, the tire may be inflated while the rim/wheel is on the vehicle, provided remote control inflation equipment is used and no employees remain in the trajectory during inflation.

(5) Tires shall be inflated outside a restraining device only to a pressure sufficient to force the tire bead onto the rim ledge and create an airtight seal with the tire and bead.

(6) Whenever a rim/wheel is in a restraining device the employee shall not rest or lean any part of his body or equipment on or against the restraining device.

(7) After tire inflation, the tire and wheel components shall be inspected while still within the restraining device to make sure that they are properly seated and locked. If further adjustment to the tire or wheel components is necessary, the tire shall be deflated by removal of the valve core before the adjustment is made.

(8) No attempt shall be made to correct the seating of side and lock rings by hammering, striking, or forcing the components while the tire is pressurized.

(9) Cracked, broken, bent, or otherwise damaged rim components shall not be reworked, welded, brazed, or otherwise heated.

(10) Whenever multi-piece rim/wheels are being handled, employees shall stay out of the trajectory unless the employer can demonstrate that performance of the servicing makes the employee's presence in the trajectory necessary.

(11) No heat shall be applied to a multi-piece wheel or wheel component.

(g) Safe operating procedure—single piece rim/wheels.
The employer shall establish a safe operating procedure for servicing single piece rim/wheels and shall assure that employees are instructed in and follow that procedure. The procedure shall include at least the following elements:

(1) Tires shall be completely deflated by removal of the valve core before demounting.

(2) Mounting and demounting of the tire shall be done only from the narrow ledge side of the wheel. Care shall be taken to avoid damaging the tire beads while mounting tires on wheels. Tires shall be mounted only on compatible wheels of matching bead diameter and width.

(3) Nonflammable rubber lubricant shall be applied to bead and wheel mating surfaces before assembly of the rim/wheel, unless the tire or wheel manufacturer recommends against the use of any rubber lubricant.

(4) If a tire changing machine is used, the tire shall be inflated only to the minimum pressure necessary to force the tire bead onto the rim ledge while on the tire changing machine.

(5) If a bead expander is used, it shall be removed before the valve core is installed and as soon as the rim/wheel becomes airtight (the tire bead slips onto the bead seat).

(6) Tires may be inflated only when contained within a restraining device, positioned behind a barrier, or bolted on the vehicle with the lug nuts fully tightened.

(7) Tires shall not be inflated when any flat, solid surface is in the trajectory and within one foot of the sidewall.

(8) Employees shall stay out of the trajectory when inflating a tire.

(9) Tires shall not be inflated to more than the inflation pressure stamped in the sidewall unless a higher pressure is recommended by the manufacturer.

(10) Tires shall not be inflated above the maximum pressure recommended by the manufacturer to seat the tire bead firmly against the rim flange.

(11) No heat shall be applied to a single piece wheel.

(12) Cracked, broken, bent, or otherwise damaged wheels shall not be reworked, welded, brazed, or otherwise heated.

Reprints of the charts are available through the Occupational Safety and Health Administration (OSHA) Area and Regional Offices. The address and telephone number of the nearest OSHA office can be obtained by looking in the local telephone directory under U.S. Government, U.S. Department of Labor, Occupational Safety and Health Administration.

Single copies are available without charge. Individuals, establishments and other organizations desiring single or multiple copies of these charts may order them from the OSHA Publications Office, U.S. Department of Labor, Room N–3101, Washington, DC 20210, Telephone (202) 219–4667.

Only MICHELIN® truck tires that are marked “REGROOVABLE” on the sidewall may be regrooved. After regrooving, you must have at least 3/32" of under tread covering the top ply. If steel is exposed, the tire must be scrapped or retreaded. In addition, some tread designs will have a regrooving depth indicator as shown below. Do not regroove below the depth of the indicator. Regrooving depth indicators are holes (of 4 mm depth) situated on the treadwear indicator to indicate the recommended regrooving depth for these tires.

It is the responsibility of the regroover to assure that all Federal Regulations are met. See US Code of Federal Regulations: Title 49, Transportation; Parts 569 and 393.75.

One of the regulations governing regrooving tires requires that a regrooved tire must have a minimum of 90 linear inches of tread edge per linear foot of the circumference.

The MICHELIN XZU2 tire has only 3 circumferential tread grooves. To meet the 569.7 (iii) requirement, additional lateral grooves must be added as shown below.
REGROOVING CODE
U. S. CODE OF FEDERAL REGULATIONS:
TITLE 49, TRANSPORTATION; PARTS 569.7 AND 393.75
(EXTRACTS)
For complete regulations, go to: ecfr.gpoaccess.gov

569.7 REQUIREMENTS.
(a) Regrooved tires. (1) Except as permitted by paragraph (a)(2) of this section, no person shall sell, offer for sale, or introduce or deliver for introduction into interstate commerce regrooved tires produced by removing rubber from the surface of a worn tire tread to generate a new tread pattern. Any person who regrooves tires and leases them to owners or operators of motor vehicles and any person who regrooves his own tires for use on motor vehicles is considered to be a person delivering for introduction into interstate commerce within the meaning of this part.

(b) Siped regroovable tires. No person shall sell, offer for sale, or introduce for sale or deliver for introduction into interstate commerce a regroovable tire that has been siped by cutting the tread surface without removing rubber if the tire cord material is damaged as a result of the siping process, or if the tire is siped deeper than the original or retread groove depth.

393.75 TIRES.
(a) No motor vehicle shall be operated on any tire that –

1) Has body ply or belt material exposed through the tread or sidewall,

2) Has any tread or sidewall separation,

3) Is flat or has an audible leak, or

4) Has a cut to the extent that the ply or belt material is exposed.

(b) Any tire on the front wheels of a bus, truck, or truck tractor shall have a tread groove pattern depth of at least 4/32 of an inch when measured at any point on a major tread groove. The measurements shall not be made where tie bars, humps, or fillets are located.

(c) Except as provided in paragraph (b) of this section, tires shall have a tread groove pattern depth of at least 2/32 of an inch when measured in a major tread groove. The measurement shall not be made where tie bars, humps or fillets are located.

(d) No bus shall be operated with regrooved, recapped or retreaded tires on the front wheels.

(e) A regrooved tire with a load-carrying capacity equal to or greater than 2,232 kg (4,920 pounds) shall not be used on the front wheels of any truck or truck tractor.
PUBLICATIONS, VIDEOS, AND WEBSITES

Publications – Data Books:
- BF Goodrich’ s Commercial Truck Tires Data Book .. BWL42029
- MICHELIN’ s Agricultural Tire Data Book .. MUT41305
- MICHELIN’ s Data Book (Passenger Tire and Light Truck Tire) ... MDL41780
- MICHELIN’ s Earthmover and Industrial Data Book .. MEL40017
- MICHELIN’ s Truck Tire Data Book: RV Tires, Commercial Light Truck Tires, Truck Tires and Retreads ... MWL40731

Publications – References:
- Crown/Sidewall Repair Template ... MWT40192
- MICHELIN’ s Truck Tire Nail Hole Repair Procedures .. MWT40163
- MICHELIN’ s Earthmover and Industrial Tire Reference Brochure ... MEL41736
- MICHELIN’ s RV Tires ... MWL43146
- MICHELIN’ s X One’ s Truck Tire Service Manual ... MWL43101
- Tubeless Bead Seal (TBS) Installation Guide ... MEL41298

Publications – Warranties:
- Agricultural Tires Limited Manufacturer’ s Warranty (MICHELIN’ s/KLÉBER’) XUM41727
- BF Goodrich’ s Truck Tire Warranty ... BMW40844
- Earthmover Limited Tire Warranty ... MEE40022
- Michelin Retread Technologies, Inc. National Limited Warranty .. MWW41268
- Passenger and Light Truck - MICHELIN’ s Complete Warranty .. MDW41156
- Truck Tire Operator’ s Manual and Limited Warranty .. MWE40021

Technical Bulletins: www.michelintruck.com

Videos – CDs/DVDs:
- Commercial Road Service DVD(3) ... MWV43242
- MICHELIN’ s X One’ s Driver Information DVD .. MWV42991
- MICHELIN’ s X One’ s DVD .. MWV42737
- MICHELIN’ s X One’ s Go Wide Save Green DVD ... MWV43625
- MICHELIN’ s X One’ s Tires Technical Videos DVD .. MWV42085
- MICHELIN Americas Truck Tire Commercial Tech Videos DVD .. MWV43100

- Antisplash Technology
- Axel Parallelism, Axle Thrust, Toe Ackermann, Plus (ATTACC PLUS)
- Fundamentals of Tire Wear
- How a Tire is Built
- Infini-Coil Technology
- Introduction to Michelin

Recreational Vehicle Reference Tool CD .. MWV43111

TIA Training Videos DVD ... MWV43668

- Commercial Road Service
- Tubeless Radial Truck Tire Safety (English, Français, Español)
- Wheel End Maintenance

Videos – VHS:
- Critical Factor - School Bus Video(2) .. MWV42336
- Critical Factor - Truck Video(1) .. MWV41415
- Critical Factor Loop For Truckstops(2) ... MWV41488
- Proper New Tire Mounting Video (English)(2) .. MWV42433
- Proper New Tire Mounting Video (Spanish)(2) ... MWV42862
- Radial Runout and Match Mounting Video(1) ... MWV41721
- Troubleshooting Vibration Video(1) .. MWV42434
- Thermal Camera/Heat Video ... MYV42389

To obtain copies of these Publications, CDs/DVDs and Videos, contact your MICHELIN Sales Representative or contact Promotional Fulfillment Center at 1-800-677-3322, Option #2 (Monday through Friday, 9 a.m. to 5 p.m. Eastern Time).

(1) Available until inventory is depleted. Also available on MWV43100.
(2) Available until inventory is depleted.
(3) Available until inventory is depleted. Also available on MWV43668.
Industry Contacts And Publications:

OSHA (Occupational Safety and Health Administration) ..www.osha.gov
 – Safety Standard No. 29 Cfr, Part 1910.177

RMA (Rubber Manufacturers Association) ...www.rma.org
 – Care And Service of Truck and Light Truck Tires
 – Inspection Procedures for Potential Zipper Ruptures in Steel Cord Radial Medium and Light Duty
 – Truck Tires (Tisb 33, Number 2)

SAE (Society of Automotive Engineers) ..www.sae.org

TIA (Tire Industry Association) - Formerly ITRA and TANAwww.tireindustry.org
 – Commercial Tire Service Manual

TMC (Technology & Maintenance Council) ...http://tmc.truckline.com
 – TMC RP 201C, Tire Flap and Rim Dimensions
 – TMC RP 203C, Truck Tire Regrooving
 – TMC RP 205B, Use of Tire Bead Lubricants
 – TMC RP 206B, Tire Repair Procedures
 – TMC RP 208C, Tire Cost Determination
 – TMC RP 209D, Tire and Rim Safety Procedures
 – TMC RP 210D, Radial Tire Construction Terminology
 – TMC RP 211B, Rim and Wheel Selection and Maintenance
 – TMC RP 212C, Industry Advisory for Retreading Truck and Bus Tires
 – TMC RP 213D, RMA Truck Tire and Wheel-Related Publications
 – TMC RP 214C, Tire/Wheel End Balance and Runout
 – TMC RP 215D, Sources of Tire and Wheel Information
 – TMC RP 216B, Radial Tire Conditions Analysis Guide
 – TMC RP 217B, Attaching Hardware for Disc Wheels
 – TMC RP 218D, DOT Tire Identification Codes
 – TMC RP 220C, Tire Tread Design Selection
 – TMC RP 221C, Retread Plant Inspection Guidelines
 – TMC RP 222B, User’s Guide to Wheels and Rims
 – TMC RP 223C, Tire Selection Process
 – TMC RP 224C, Tire Retread Process
 – TMC RP 226B, Radial Tire Repair Identifier (Blue Triangle)
 – TMC RP 228A, Guidelines for Tire Radio Frequency Tags and Readers
 – TMC RP 229A, Computerized Tire Recordkeeping
 – TMC RP 230A, Tire Test Procedures for Treadwear, Serviceability and Fuel Economy
 – TMC RP 231, Wheel System Maintenance Labeling Guidelines
 – TMC RP 232, Zipper Rupture Inspection Procedures for Light- and Medium-Duty Truck Tires
 – TMC RP 233A, Radial Tire Nail Hole Repair Training Guidelines
 – TMC RP 234, Proper Valve Hardware Selection Guidelines
 – TMC RP 235, Guidelines for Tire Inflation Pressure Maintenance
 – TMC RP 236, Outsourcing Guidelines for Tire and Wheel Maintenance
 – TMC RP 237, Rotorqueing Guidelines for Disc Wheel
 – TMC RP 238, Troubleshooting Disc Wheel Looseness
 – TMC RP 239, Commercial Vehicle Tire Inflation and/or Monitoring Systems Guidelines
 – TMC RP 240, Steel Wheel and Rim Refinishing Guidelines
 – TMC RP 241, Tubeless Disc Wheel Inspection for Undersized Bead Seats
 – TMC RP 242, Guidelines for Evaluating Tire and Wheel Related Products and Systems
 – TMC RP 243, Tire and Wheel Match Mounting Markings
 – TMC RP 608A, Brake Drums and Rotors
 – TMC RP 642A, Total Vehicle Alignment: Recommendations for Maximizing Tire and Alignment-Related Component Life
 – TMC RP 643, Air-Ride Suspension Maintenance Guidelines
 – TMC RP 645, Tie Rod End Inspection and Maintenance Procedure
 – TMC RP 648, Troubleshooting Ride Complaints

TRIB (Tire Retread Information Bureau) ...www.retread.org

TRA (The Tire and Rim Association, Inc.) ...www.us-tra.org

TTMA (Truck Trailer Manufacturers Association) ...www.ttmanet.org
 – TTMA RP No. 17, Trailer Axle Alignment
INDEX

<table>
<thead>
<tr>
<th>A</th>
<th>Ackerman Principle</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pressure Maintenance</td>
<td>36-37, 64, 72-73</td>
<td></td>
</tr>
<tr>
<td>Air Suspensions</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>AIRSTOP® Tube</td>
<td>28-29</td>
<td></td>
</tr>
<tr>
<td>Alignment</td>
<td>46-52</td>
<td></td>
</tr>
<tr>
<td>Camber</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Caster</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Recommended Alignment Targets</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Steer Axle Geometry</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Steer Axle Setback</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Tandem Axle Parallelism</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Thrust Angle (Tracking)</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Toe</td>
<td>46-47</td>
<td></td>
</tr>
<tr>
<td>Toe-Out-On-Turns</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Alignment Checks (Frequency)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Alignment Equipment</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Alignment Field Method</td>
<td>50, 118</td>
<td></td>
</tr>
<tr>
<td>Alignment Targets (TMC Guidelines)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>9, 36</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>4-5</td>
<td></td>
</tr>
<tr>
<td>Commercial Vehicle Safety Alliance (CVSA)</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Clearances</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>On/Off-Road</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Recreational Vehicle</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Special Application Tires</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Approximate Weight of Materials</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>ATTACC Plus System (Field Alignment Method)</td>
<td>118-119</td>
<td></td>
</tr>
<tr>
<td>Axle Alignment</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Axle Parallelism and Tracking</td>
<td>51-52</td>
<td></td>
</tr>
<tr>
<td>Axle Track Width</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Bias-Ply (Cross, Diagonal Ply)</td>
<td>90-100</td>
<td></td>
</tr>
<tr>
<td>BibAlignment System</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Brake Heat</td>
<td>57-58</td>
<td></td>
</tr>
<tr>
<td>Brake Lock</td>
<td>56-57</td>
<td></td>
</tr>
<tr>
<td>Braking Systems and Issues</td>
<td>56-58</td>
<td></td>
</tr>
<tr>
<td>Branding</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Buff Radius</td>
<td>66, 68</td>
<td></td>
</tr>
<tr>
<td>Buff Width</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Buffing Specification Chart (Retread)</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Camber</td>
<td>48, 54</td>
<td></td>
</tr>
<tr>
<td>Casing Management</td>
<td>122-123</td>
<td></td>
</tr>
<tr>
<td>Cast Spoke Wheel</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Castor</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Central Tire Inflation (CTI) System</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Chains</td>
<td>43, 69</td>
<td></td>
</tr>
<tr>
<td>Clearances</td>
<td>31-32</td>
<td></td>
</tr>
<tr>
<td>Front Wheel Clearances</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Lateral Clearances</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Clearances</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Vertical Clearances</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Cold Climate Pressure Correction Data</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Commercial Vehicle Safety Alliance (CVSA)</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Comparative Sizes</td>
<td>6, 91</td>
<td></td>
</tr>
<tr>
<td>Components and Materials</td>
<td>21, 94</td>
<td></td>
</tr>
<tr>
<td>Contact Area/Footprint</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Conversion Table</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Cost Analysis</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Cost Per Mile (CPM)</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Critical Six Fundamentals</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Cross (Bias) Ply</td>
<td>89-100</td>
<td></td>
</tr>
<tr>
<td>Cupping Wear</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Damages (Radial/Crown)</td>
<td>102-112</td>
<td></td>
</tr>
<tr>
<td>Definitions</td>
<td>6, 8-9, 40</td>
<td></td>
</tr>
<tr>
<td>Demounting</td>
<td>28-29</td>
<td></td>
</tr>
<tr>
<td>MICHELIN® X One® Tire</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Tubeless</td>
<td>28-29</td>
<td></td>
</tr>
<tr>
<td>Tube-Type</td>
<td>96-97</td>
<td></td>
</tr>
<tr>
<td>Diagonal (Bias) Ply</td>
<td>89-100</td>
<td></td>
</tr>
<tr>
<td>Diagonal Wear</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Directional Tires</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Disc Wheel Installation</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Do Not Overload</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>DOT Sidewall Markings</td>
<td>7-8</td>
<td></td>
</tr>
<tr>
<td>Drive at Proper Speeds</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Drive Carefully</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Dual Assembly</td>
<td>30-33</td>
<td></td>
</tr>
<tr>
<td>Dual Spacing/Measuring</td>
<td>6, 30</td>
<td></td>
</tr>
<tr>
<td>Dynamometers</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Effect and Cause – Tire Damage</td>
<td>102-112</td>
<td></td>
</tr>
<tr>
<td>Air Infiltration</td>
<td>104-105</td>
<td></td>
</tr>
<tr>
<td>Bead Damages</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Fatigue Related Damage</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Impact Damage</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Pinch Shock</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Repairs and Retreading Conditions</td>
<td>110-111</td>
<td></td>
</tr>
<tr>
<td>Run-flat</td>
<td>102-103</td>
<td></td>
</tr>
<tr>
<td>Scrap Inspection Form</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Extending Tire Life</td>
<td>36-62</td>
<td></td>
</tr>
<tr>
<td>Factors Affecting Tread Life/Tread Wear</td>
<td>46-52</td>
<td></td>
</tr>
<tr>
<td>Field Alignment Checks</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Fifth Wheel</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Flap Code</td>
<td>90, 93</td>
<td></td>
</tr>
<tr>
<td>Flats</td>
<td>56-57</td>
<td></td>
</tr>
<tr>
<td>Flood Damage</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Footprint</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Free Radius</td>
<td>6-7</td>
<td></td>
</tr>
<tr>
<td>Free Rolling Wear</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Fuel Efficiency/Saving/Analysis</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Fuel Analysis</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>GAWR (Gross Axle Weight Rating)</td>
<td>7-8, 13, 41, 73, 75-76</td>
<td></td>
</tr>
<tr>
<td>Gear Ratio</td>
<td>30, 69</td>
<td></td>
</tr>
<tr>
<td>General Information</td>
<td>114-117</td>
<td></td>
</tr>
<tr>
<td>Approximate Weight of Materials</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Conversion Table (Standard - Metric - Degrees)</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Load Index</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Load Range/Ply Rating</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Pressure Unit Conversion</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Speed Symbol</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Units of Measurement</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>GCW (Gross Combination Weight)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>GCWR (Gross Combined Weight Rating)</td>
<td>74-76</td>
<td></td>
</tr>
<tr>
<td>GVW (Gross Vehicle Weight)</td>
<td>12-14, 74</td>
<td></td>
</tr>
<tr>
<td>GVWR (Gross Vehicle Weight Rating)</td>
<td>73, 75</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Hub Piloted Disc Wheels</td>
<td>126</td>
</tr>
<tr>
<td>Inspections</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>17, 38, 49, 112</td>
<td></td>
</tr>
<tr>
<td>Inflation Pressure</td>
<td>27, 36-37, 64, 100, 124</td>
<td></td>
</tr>
<tr>
<td>Legal Limits</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Load Index</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Load per Inch Width Law</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Load Range/Ply Rating</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Loaded Radius</td>
<td>6-7</td>
<td></td>
</tr>
<tr>
<td>Loads Per Axle</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Lubrication</td>
<td>22, 95</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Maintaining the Tire</td>
<td>36-45</td>
</tr>
<tr>
<td>Maintaining the Vehicle</td>
<td>46-62</td>
<td></td>
</tr>
<tr>
<td>Material Weights</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Matching Pressures</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Matching Tires</td>
<td>30, 33-34, 124</td>
<td></td>
</tr>
<tr>
<td>Michelin Retread Technologies (MRT)</td>
<td>66-68, 88</td>
<td></td>
</tr>
<tr>
<td>MICHELIN® X One® Tire</td>
<td>63-70</td>
<td></td>
</tr>
<tr>
<td>Minimum Dual Spacing</td>
<td>6, 106</td>
<td></td>
</tr>
</tbody>
</table>

Section Nine: Appendix | 143